/* * Copyright © 2023 Michael Smith * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED “AS IS” AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR * PERFORMANCE OF THIS SOFTWARE. */ #include "intdefs.h" #include "x86.h" static int mrmsib(const uchar *p, int addrlen) { // I won't lie: I thought I almost understood this, but after Bill walked me // through correcting a bunch of wrong cases I now realise that I don't // really understand it at all. If it helps, I used this as a reference: // https://github.com/Nomade040/length-disassembler/blob/e8b34546/ldisasm.cpp#L14 // But it's confusingly-written enough that the code I wrote before didn't // work, so with any luck nobody will need to refer to it again and this is // actually correct now. Fingers crossed. if (addrlen == 4 || *p & 0xC0) { int sib = addrlen == 4 && *p < 0xC0 && (*p & 7) == 4; switch (*p & 0xC0) { // disp8 case 0x40: return 2 + sib; // disp16/32 case 0: if ((*p & 7) != 5) { // disp8/32 via SIB if (sib && (p[1] & 7) == 5) return *p & 0x40 ? 3 : 6; return 1 + sib; } case 0x80: return 1 + addrlen + sib; } } if (addrlen == 2 && *p == 0x26) return 3; return 1; // note: include the mrm itself in the byte count } int x86_len(const void *insn_) { #define CASES(name, _) case name: const uchar *insn = insn_; int pfxlen = 0, addrlen = 4, operandlen = 4; p: switch (*insn) { case X86_PFX_ADSZ: addrlen = 2; goto P; // bit dumb sorry case X86_PFX_OPSZ: operandlen = 2; P: X86_SEG_PREFIXES(CASES) case X86_PFX_LOCK: case X86_PFX_REPN: case X86_PFX_REP: // instruction can only be 15 bytes. this could go over, oh well, // just don't want to loop for 8 million years if (++pfxlen == 14) return -1; ++insn; goto p; } switch (*insn) { X86_OPS_1BYTE_NO(CASES) return pfxlen + 1; X86_OPS_1BYTE_I8(CASES) operandlen = 1; X86_OPS_1BYTE_IW(CASES) return pfxlen + 1 + operandlen; X86_OPS_1BYTE_I16(CASES) return pfxlen + 3; X86_OPS_1BYTE_MRM(CASES) return pfxlen + 1 + mrmsib(insn + 1, addrlen); X86_OPS_1BYTE_MRM_I8(CASES) operandlen = 1; X86_OPS_1BYTE_MRM_IW(CASES) return pfxlen + 1 + operandlen + mrmsib(insn + 1, addrlen); case X86_ENTER: return pfxlen + 4; case X86_CRAZY8: operandlen = 1; case X86_CRAZYW: if ((insn[1] & 0x38) >= 0x10) operandlen = 0; return pfxlen + 1 + operandlen + mrmsib(insn + 1, addrlen); case X86_2BYTE: ++insn; goto b2; } return -1; b2: switch (*insn) { // we don't support any 3 byte ops for now, implement if ever needed... case X86_3BYTE1: case X86_3BYTE2: case X86_3DNOW: return -1; X86_OPS_2BYTE_NO(CASES) return pfxlen + 2; X86_OPS_2BYTE_IW(CASES) return pfxlen + 2 + operandlen; X86_OPS_2BYTE_MRM(CASES) return pfxlen + 2 + mrmsib(insn + 1, addrlen); X86_OPS_2BYTE_MRM_I8(CASES) operandlen = 1; return pfxlen + 2 + operandlen + mrmsib(insn + 1, addrlen); } return -1; #undef CASES } // vi: sw=4 ts=4 noet tw=80 cc=80