// This file contains a recursive descent parser for C. // // Most functions in this file are named after the symbols they are // supposed to read from an input token list. For example, stmt() is // responsible for reading a statement from a token list. The function // then construct an AST node representing a statement. // // Each function conceptually returns two values, an AST node and // remaining part of the input tokens. Since C doesn't support // multiple return values, the remaining tokens are returned to the // caller via a pointer argument. // // Input tokens are represented by a linked list. Unlike many recursive // descent parsers, we don't have the notion of the "input token stream". // Most parsing functions don't change the global state of the parser. // So it is very easy to lookahead arbitrary number of tokens in this // parser. #include "chibicc.h" // Scope for local variables, global variables, typedefs // or enum constants typedef struct { Obj *var; Type *type_def; Type *enum_ty; int enum_val; } VarScope; // Represents a block scope. typedef struct Scope Scope; struct Scope { Scope *next; // C has two block scopes; one is for variables/typedefs and // the other is for struct/union/enum tags. HashMap vars; HashMap tags; }; // Variable attributes such as typedef or extern. typedef struct { bool is_typedef; bool is_static; bool is_extern; bool is_inline; bool is_tls; int align; } VarAttr; // This struct represents a variable initializer. Since initializers // can be nested (e.g. `int x[2][2] = {{1, 2}, {3, 4}}`), this struct // is a tree data structure. typedef struct Initializer Initializer; struct Initializer { Initializer *next; Type *ty; Token *tok; bool is_flexible; // If it's not an aggregate type and has an initializer, // `expr` has an initialization expression. Node *expr; // If it's an initializer for an aggregate type (e.g. array or struct), // `children` has initializers for its children. Initializer **children; // Only one member can be initialized for a union. // `mem` is used to clarify which member is initialized. Member *mem; }; // For local variable initializer. typedef struct InitDesg InitDesg; struct InitDesg { InitDesg *next; int idx; Member *member; Obj *var; }; // All local variable instances created during parsing are // accumulated to this list. static Obj *locals; // Likewise, global variables are accumulated to this list. static Obj *globals; static Scope *scope = &(Scope){}; // Points to the function object the parser is currently parsing. static Obj *current_fn; // Lists of all goto statements and labels in the curent function. static Node *gotos; static Node *labels; // Current "goto" and "continue" jump targets. static char *brk_label; static char *cont_label; // Points to a node representing a switch if we are parsing // a switch statement. Otherwise, NULL. static Node *current_switch; static Obj *builtin_alloca; static bool is_typename(Token *tok); static Type *declspec(Token **rest, Token *tok, VarAttr *attr); static Type *typename(Token **rest, Token *tok); static Type *enum_specifier(Token **rest, Token *tok); static Type *typeof_specifier(Token **rest, Token *tok); static Type *type_suffix(Token **rest, Token *tok, Type *ty); static Type *declarator(Token **rest, Token *tok, Type *ty); static Node *declaration(Token **rest, Token *tok, Type *basety, VarAttr *attr); static void array_initializer2(Token **rest, Token *tok, Initializer *init, int i); static void struct_initializer2(Token **rest, Token *tok, Initializer *init, Member *mem); static void initializer2(Token **rest, Token *tok, Initializer *init); static Initializer *initializer(Token **rest, Token *tok, Type *ty, Type **new_ty); static Node *lvar_initializer(Token **rest, Token *tok, Obj *var); static void gvar_initializer(Token **rest, Token *tok, Obj *var); static Node *compound_stmt(Token **rest, Token *tok); static Node *stmt(Token **rest, Token *tok); static Node *expr_stmt(Token **rest, Token *tok); static Node *expr(Token **rest, Token *tok); static int64_t eval(Node *node); static int64_t eval2(Node *node, char ***label); static int64_t eval_rval(Node *node, char ***label); static bool is_const_expr(Node *node); static Node *assign(Token **rest, Token *tok); static Node *logor(Token **rest, Token *tok); static double eval_double(Node *node); static Node *conditional(Token **rest, Token *tok); static Node *logand(Token **rest, Token *tok); static Node *bitor(Token **rest, Token *tok); static Node *bitxor(Token **rest, Token *tok); static Node *bitand(Token **rest, Token *tok); static Node *equality(Token **rest, Token *tok); static Node *relational(Token **rest, Token *tok); static Node *shift(Token **rest, Token *tok); static Node *add(Token **rest, Token *tok); static Node *new_add(Node *lhs, Node *rhs, Token *tok); static Node *new_sub(Node *lhs, Node *rhs, Token *tok); static Node *mul(Token **rest, Token *tok); static Node *cast(Token **rest, Token *tok); static Member *get_struct_member(Type *ty, Token *tok); static Type *struct_decl(Token **rest, Token *tok); static Type *union_decl(Token **rest, Token *tok); static Node *postfix(Token **rest, Token *tok); static Node *funcall(Token **rest, Token *tok, Node *node); static Node *unary(Token **rest, Token *tok); static Node *primary(Token **rest, Token *tok); static Token *parse_typedef(Token *tok, Type *basety); static bool is_function(Token *tok); static Token *function(Token *tok, Type *basety, VarAttr *attr); static Token *global_variable(Token *tok, Type *basety, VarAttr *attr); static int align_down(int n, int align) { return align_to(n - align + 1, align); } static void enter_scope(void) { Scope *sc = calloc(1, sizeof(Scope)); sc->next = scope; scope = sc; } static void leave_scope(void) { scope = scope->next; } // Find a variable by name. static VarScope *find_var(Token *tok) { for (Scope *sc = scope; sc; sc = sc->next) { VarScope *sc2 = hashmap_get2(&sc->vars, tok->loc, tok->len); if (sc2) return sc2; } return NULL; } static Type *find_tag(Token *tok) { for (Scope *sc = scope; sc; sc = sc->next) { Type *ty = hashmap_get2(&sc->tags, tok->loc, tok->len); if (ty) return ty; } return NULL; } static Node *new_node(NodeKind kind, Token *tok) { Node *node = calloc(1, sizeof(Node)); node->kind = kind; node->tok = tok; return node; } static Node *new_binary(NodeKind kind, Node *lhs, Node *rhs, Token *tok) { Node *node = new_node(kind, tok); node->lhs = lhs; node->rhs = rhs; return node; } static Node *new_unary(NodeKind kind, Node *expr, Token *tok) { Node *node = new_node(kind, tok); node->lhs = expr; return node; } static Node *new_num(int64_t val, Token *tok) { Node *node = new_node(ND_NUM, tok); node->val = val; return node; } static Node *new_long(int64_t val, Token *tok) { Node *node = new_node(ND_NUM, tok); node->val = val; node->ty = ty_long; return node; } static Node *new_ulong(long val, Token *tok) { Node *node = new_node(ND_NUM, tok); node->val = val; node->ty = ty_ulong; return node; } static Node *new_var_node(Obj *var, Token *tok) { Node *node = new_node(ND_VAR, tok); node->var = var; return node; } static Node *new_vla_ptr(Obj *var, Token *tok) { Node *node = new_node(ND_VLA_PTR, tok); node->var = var; return node; } Node *new_cast(Node *expr, Type *ty) { add_type(expr); Node *node = calloc(1, sizeof(Node)); node->kind = ND_CAST; node->tok = expr->tok; node->lhs = expr; node->ty = copy_type(ty); return node; } static VarScope *push_scope(char *name) { VarScope *sc = calloc(1, sizeof(VarScope)); hashmap_put(&scope->vars, name, sc); return sc; } static Initializer *new_initializer(Type *ty, bool is_flexible) { Initializer *init = calloc(1, sizeof(Initializer)); init->ty = ty; if (ty->kind == TY_ARRAY) { if (is_flexible && ty->size < 0) { init->is_flexible = true; return init; } init->children = calloc(ty->array_len, sizeof(Initializer *)); for (int i = 0; i < ty->array_len; i++) init->children[i] = new_initializer(ty->base, false); return init; } if (ty->kind == TY_STRUCT || ty->kind == TY_UNION) { // Count the number of struct members. int len = 0; for (Member *mem = ty->members; mem; mem = mem->next) len++; init->children = calloc(len, sizeof(Initializer *)); for (Member *mem = ty->members; mem; mem = mem->next) { if (is_flexible && ty->is_flexible && !mem->next) { Initializer *child = calloc(1, sizeof(Initializer)); child->ty = mem->ty; child->is_flexible = true; init->children[mem->idx] = child; } else { init->children[mem->idx] = new_initializer(mem->ty, false); } } return init; } return init; } static Obj *new_var(char *name, Type *ty) { Obj *var = calloc(1, sizeof(Obj)); var->name = name; var->ty = ty; var->align = ty->align; push_scope(name)->var = var; return var; } static Obj *new_lvar(char *name, Type *ty) { Obj *var = new_var(name, ty); var->is_local = true; var->next = locals; locals = var; return var; } static Obj *new_gvar(char *name, Type *ty) { Obj *var = new_var(name, ty); var->next = globals; var->is_static = true; var->is_definition = true; globals = var; return var; } static char *new_unique_name(void) { static int id = 0; return format(".L..%d", id++); } static Obj *new_anon_gvar(Type *ty) { return new_gvar(new_unique_name(), ty); } static Obj *new_string_literal(char *p, Type *ty) { Obj *var = new_anon_gvar(ty); var->init_data = p; return var; } static char *get_ident(Token *tok) { if (tok->kind != TK_IDENT) error_tok(tok, "expected an identifier"); return strndup(tok->loc, tok->len); } static Type *find_typedef(Token *tok) { if (tok->kind == TK_IDENT) { VarScope *sc = find_var(tok); if (sc) return sc->type_def; } return NULL; } static void push_tag_scope(Token *tok, Type *ty) { hashmap_put2(&scope->tags, tok->loc, tok->len, ty); } // declspec = ("void" | "_Bool" | "char" | "short" | "int" | "long" // | "typedef" | "static" | "extern" | "inline" // | "_Thread_local" | "__thread" // | "signed" | "unsigned" // | struct-decl | union-decl | typedef-name // | enum-specifier | typeof-specifier // | "const" | "volatile" | "auto" | "register" | "restrict" // | "__restrict" | "__restrict__" | "_Noreturn")+ // // The order of typenames in a type-specifier doesn't matter. For // example, `int long static` means the same as `static long int`. // That can also be written as `static long` because you can omit // `int` if `long` or `short` are specified. However, something like // `char int` is not a valid type specifier. We have to accept only a // limited combinations of the typenames. // // In this function, we count the number of occurrences of each typename // while keeping the "current" type object that the typenames up // until that point represent. When we reach a non-typename token, // we returns the current type object. static Type *declspec(Token **rest, Token *tok, VarAttr *attr) { // We use a single integer as counters for all typenames. // For example, bits 0 and 1 represents how many times we saw the // keyword "void" so far. With this, we can use a switch statement // as you can see below. enum { VOID = 1 << 0, BOOL = 1 << 2, CHAR = 1 << 4, SHORT = 1 << 6, INT = 1 << 8, LONG = 1 << 10, FLOAT = 1 << 12, DOUBLE = 1 << 14, OTHER = 1 << 16, SIGNED = 1 << 17, UNSIGNED = 1 << 18, }; Type *ty = ty_int; int counter = 0; bool is_atomic = false; while (is_typename(tok)) { // Handle storage class specifiers. if (equal(tok, "typedef") || equal(tok, "static") || equal(tok, "extern") || equal(tok, "inline") || equal(tok, "_Thread_local") || equal(tok, "__thread")) { if (!attr) error_tok(tok, "storage class specifier is not allowed in this context"); if (equal(tok, "typedef")) attr->is_typedef = true; else if (equal(tok, "static")) attr->is_static = true; else if (equal(tok, "extern")) attr->is_extern = true; else if (equal(tok, "inline")) attr->is_inline = true; else attr->is_tls = true; if (attr->is_typedef && attr->is_static + attr->is_extern + attr->is_inline + attr->is_tls > 1) error_tok(tok, "typedef may not be used together with static," " extern, inline, __thread or _Thread_local"); tok = tok->next; continue; } // These keywords are recognized but ignored. if (consume(&tok, tok, "const") || consume(&tok, tok, "volatile") || consume(&tok, tok, "auto") || consume(&tok, tok, "register") || consume(&tok, tok, "restrict") || consume(&tok, tok, "__restrict") || consume(&tok, tok, "__restrict__") || consume(&tok, tok, "_Noreturn")) continue; if (equal(tok, "_Atomic")) { tok = tok->next; if (equal(tok , "(")) { ty = typename(&tok, tok->next); tok = skip(tok, ")"); } is_atomic = true; continue; } if (equal(tok, "_Alignas")) { if (!attr) error_tok(tok, "_Alignas is not allowed in this context"); tok = skip(tok->next, "("); if (is_typename(tok)) attr->align = typename(&tok, tok)->align; else attr->align = const_expr(&tok, tok); tok = skip(tok, ")"); continue; } // Handle user-defined types. Type *ty2 = find_typedef(tok); if (equal(tok, "struct") || equal(tok, "union") || equal(tok, "enum") || equal(tok, "typeof") || ty2) { if (counter) break; if (equal(tok, "struct")) { ty = struct_decl(&tok, tok->next); } else if (equal(tok, "union")) { ty = union_decl(&tok, tok->next); } else if (equal(tok, "enum")) { ty = enum_specifier(&tok, tok->next); } else if (equal(tok, "typeof")) { ty = typeof_specifier(&tok, tok->next); } else { ty = ty2; tok = tok->next; } counter += OTHER; continue; } // Handle built-in types. if (equal(tok, "void")) counter += VOID; else if (equal(tok, "_Bool")) counter += BOOL; else if (equal(tok, "char")) counter += CHAR; else if (equal(tok, "short")) counter += SHORT; else if (equal(tok, "int")) counter += INT; else if (equal(tok, "long")) counter += LONG; else if (equal(tok, "float")) counter += FLOAT; else if (equal(tok, "double")) counter += DOUBLE; else if (equal(tok, "signed")) counter |= SIGNED; else if (equal(tok, "unsigned")) counter |= UNSIGNED; else unreachable(); switch (counter) { case VOID: ty = ty_void; break; case BOOL: ty = ty_bool; break; case CHAR: case SIGNED + CHAR: ty = ty_char; break; case UNSIGNED + CHAR: ty = ty_uchar; break; case SHORT: case SHORT + INT: case SIGNED + SHORT: case SIGNED + SHORT + INT: ty = ty_short; break; case UNSIGNED + SHORT: case UNSIGNED + SHORT + INT: ty = ty_ushort; break; case INT: case SIGNED: case SIGNED + INT: ty = ty_int; break; case UNSIGNED: case UNSIGNED + INT: ty = ty_uint; break; case LONG: case LONG + INT: case LONG + LONG: case LONG + LONG + INT: case SIGNED + LONG: case SIGNED + LONG + INT: case SIGNED + LONG + LONG: case SIGNED + LONG + LONG + INT: ty = ty_long; break; case UNSIGNED + LONG: case UNSIGNED + LONG + INT: case UNSIGNED + LONG + LONG: case UNSIGNED + LONG + LONG + INT: ty = ty_ulong; break; case FLOAT: ty = ty_float; break; case DOUBLE: ty = ty_double; break; case LONG + DOUBLE: ty = ty_ldouble; break; default: error_tok(tok, "invalid type"); } tok = tok->next; } if (is_atomic) { ty = copy_type(ty); ty->is_atomic = true; } *rest = tok; return ty; } // func-params = ("void" | param ("," param)* ("," "...")?)? ")" // param = declspec declarator static Type *func_params(Token **rest, Token *tok, Type *ty) { if (equal(tok, "void") && equal(tok->next, ")")) { *rest = tok->next->next; return func_type(ty); } Type head = {}; Type *cur = &head; bool is_variadic = false; while (!equal(tok, ")")) { if (cur != &head) tok = skip(tok, ","); if (equal(tok, "...")) { is_variadic = true; tok = tok->next; skip(tok, ")"); break; } Type *ty2 = declspec(&tok, tok, NULL); ty2 = declarator(&tok, tok, ty2); Token *name = ty2->name; if (ty2->kind == TY_ARRAY) { // "array of T" is converted to "pointer to T" only in the parameter // context. For example, *argv[] is converted to **argv by this. ty2 = pointer_to(ty2->base); ty2->name = name; } else if (ty2->kind == TY_FUNC) { // Likewise, a function is converted to a pointer to a function // only in the parameter context. ty2 = pointer_to(ty2); ty2->name = name; } cur = cur->next = copy_type(ty2); } if (cur == &head) is_variadic = true; ty = func_type(ty); ty->params = head.next; ty->is_variadic = is_variadic; *rest = tok->next; return ty; } // array-dimensions = ("static" | "restrict")* const-expr? "]" type-suffix static Type *array_dimensions(Token **rest, Token *tok, Type *ty) { while (equal(tok, "static") || equal(tok, "restrict")) tok = tok->next; if (equal(tok, "]")) { ty = type_suffix(rest, tok->next, ty); return array_of(ty, -1); } Node *expr = conditional(&tok, tok); tok = skip(tok, "]"); ty = type_suffix(rest, tok, ty); if (ty->kind == TY_VLA || !is_const_expr(expr)) return vla_of(ty, expr); return array_of(ty, eval(expr)); } // type-suffix = "(" func-params // | "[" array-dimensions // | ε static Type *type_suffix(Token **rest, Token *tok, Type *ty) { if (equal(tok, "(")) return func_params(rest, tok->next, ty); if (equal(tok, "[")) return array_dimensions(rest, tok->next, ty); *rest = tok; return ty; } // pointers = ("*" ("const" | "volatile" | "restrict")*)* static Type *pointers(Token **rest, Token *tok, Type *ty) { while (consume(&tok, tok, "*")) { ty = pointer_to(ty); while (equal(tok, "const") || equal(tok, "volatile") || equal(tok, "restrict") || equal(tok, "__restrict") || equal(tok, "__restrict__")) tok = tok->next; } *rest = tok; return ty; } // declarator = pointers ("(" ident ")" | "(" declarator ")" | ident) type-suffix static Type *declarator(Token **rest, Token *tok, Type *ty) { ty = pointers(&tok, tok, ty); if (equal(tok, "(")) { Token *start = tok; Type dummy = {}; declarator(&tok, start->next, &dummy); tok = skip(tok, ")"); ty = type_suffix(rest, tok, ty); return declarator(&tok, start->next, ty); } Token *name = NULL; Token *name_pos = tok; if (tok->kind == TK_IDENT) { name = tok; tok = tok->next; } ty = type_suffix(rest, tok, ty); ty->name = name; ty->name_pos = name_pos; return ty; } // abstract-declarator = pointers ("(" abstract-declarator ")")? type-suffix static Type *abstract_declarator(Token **rest, Token *tok, Type *ty) { ty = pointers(&tok, tok, ty); if (equal(tok, "(")) { Token *start = tok; Type dummy = {}; abstract_declarator(&tok, start->next, &dummy); tok = skip(tok, ")"); ty = type_suffix(rest, tok, ty); return abstract_declarator(&tok, start->next, ty); } return type_suffix(rest, tok, ty); } // type-name = declspec abstract-declarator static Type *typename(Token **rest, Token *tok) { Type *ty = declspec(&tok, tok, NULL); return abstract_declarator(rest, tok, ty); } static bool is_end(Token *tok) { return equal(tok, "}") || (equal(tok, ",") && equal(tok->next, "}")); } static bool consume_end(Token **rest, Token *tok) { if (equal(tok, "}")) { *rest = tok->next; return true; } if (equal(tok, ",") && equal(tok->next, "}")) { *rest = tok->next->next; return true; } return false; } // enum-specifier = ident? "{" enum-list? "}" // | ident ("{" enum-list? "}")? // // enum-list = ident ("=" num)? ("," ident ("=" num)?)* ","? static Type *enum_specifier(Token **rest, Token *tok) { Type *ty = enum_type(); // Read a struct tag. Token *tag = NULL; if (tok->kind == TK_IDENT) { tag = tok; tok = tok->next; } if (tag && !equal(tok, "{")) { Type *ty = find_tag(tag); if (!ty) error_tok(tag, "unknown enum type"); if (ty->kind != TY_ENUM) error_tok(tag, "not an enum tag"); *rest = tok; return ty; } tok = skip(tok, "{"); // Read an enum-list. int i = 0; int val = 0; while (!consume_end(rest, tok)) { if (i++ > 0) tok = skip(tok, ","); char *name = get_ident(tok); tok = tok->next; if (equal(tok, "=")) val = const_expr(&tok, tok->next); VarScope *sc = push_scope(name); sc->enum_ty = ty; sc->enum_val = val++; } if (tag) push_tag_scope(tag, ty); return ty; } // typeof-specifier = "(" (expr | typename) ")" static Type *typeof_specifier(Token **rest, Token *tok) { tok = skip(tok, "("); Type *ty; if (is_typename(tok)) { ty = typename(&tok, tok); } else { Node *node = expr(&tok, tok); add_type(node); ty = node->ty; } *rest = skip(tok, ")"); return ty; } // Generate code for computing a VLA size. static Node *compute_vla_size(Type *ty, Token *tok) { Node *node = new_node(ND_NULL_EXPR, tok); if (ty->base) node = new_binary(ND_COMMA, node, compute_vla_size(ty->base, tok), tok); if (ty->kind != TY_VLA) return node; Node *base_sz; if (ty->base->kind == TY_VLA) base_sz = new_var_node(ty->base->vla_size, tok); else base_sz = new_num(ty->base->size, tok); ty->vla_size = new_lvar("", ty_ulong); Node *expr = new_binary(ND_ASSIGN, new_var_node(ty->vla_size, tok), new_binary(ND_MUL, ty->vla_len, base_sz, tok), tok); return new_binary(ND_COMMA, node, expr, tok); } static Node *new_alloca(Node *sz) { Node *node = new_unary(ND_FUNCALL, new_var_node(builtin_alloca, sz->tok), sz->tok); node->func_ty = builtin_alloca->ty; node->ty = builtin_alloca->ty->return_ty; node->args = sz; add_type(sz); return node; } // declaration = declspec (declarator ("=" expr)? ("," declarator ("=" expr)?)*)? ";" static Node *declaration(Token **rest, Token *tok, Type *basety, VarAttr *attr) { Node head = {}; Node *cur = &head; int i = 0; while (!equal(tok, ";")) { if (i++ > 0) tok = skip(tok, ","); Type *ty = declarator(&tok, tok, basety); if (ty->kind == TY_VOID) error_tok(tok, "variable declared void"); if (!ty->name) error_tok(ty->name_pos, "variable name omitted"); if (attr && attr->is_static) { // static local variable Obj *var = new_anon_gvar(ty); push_scope(get_ident(ty->name))->var = var; if (equal(tok, "=")) gvar_initializer(&tok, tok->next, var); continue; } // Generate code for computing a VLA size. We need to do this // even if ty is not VLA because ty may be a pointer to VLA // (e.g. int (*foo)[n][m] where n and m are variables.) cur = cur->next = new_unary(ND_EXPR_STMT, compute_vla_size(ty, tok), tok); if (ty->kind == TY_VLA) { if (equal(tok, "=")) error_tok(tok, "variable-sized object may not be initialized"); // Variable length arrays (VLAs) are translated to alloca() calls. // For example, `int x[n+2]` is translated to `tmp = n + 2, // x = alloca(tmp)`. Obj *var = new_lvar(get_ident(ty->name), ty); Token *tok = ty->name; Node *expr = new_binary(ND_ASSIGN, new_vla_ptr(var, tok), new_alloca(new_var_node(ty->vla_size, tok)), tok); cur = cur->next = new_unary(ND_EXPR_STMT, expr, tok); continue; } Obj *var = new_lvar(get_ident(ty->name), ty); if (attr && attr->align) var->align = attr->align; if (equal(tok, "=")) { Node *expr = lvar_initializer(&tok, tok->next, var); cur = cur->next = new_unary(ND_EXPR_STMT, expr, tok); } if (var->ty->size < 0) error_tok(ty->name, "variable has incomplete type"); if (var->ty->kind == TY_VOID) error_tok(ty->name, "variable declared void"); } Node *node = new_node(ND_BLOCK, tok); node->body = head.next; *rest = tok->next; return node; } static Token *skip_excess_element(Token *tok) { if (equal(tok, "{")) { tok = skip_excess_element(tok->next); return skip(tok, "}"); } assign(&tok, tok); return tok; } // string-initializer = string-literal static void string_initializer(Token **rest, Token *tok, Initializer *init) { if (init->is_flexible) *init = *new_initializer(array_of(init->ty->base, tok->ty->array_len), false); int len = MIN(init->ty->array_len, tok->ty->array_len); switch (init->ty->base->size) { case 1: { char *str = tok->str; for (int i = 0; i < len; i++) init->children[i]->expr = new_num(str[i], tok); break; } case 2: { uint16_t *str = (uint16_t *)tok->str; for (int i = 0; i < len; i++) init->children[i]->expr = new_num(str[i], tok); break; } case 4: { uint32_t *str = (uint32_t *)tok->str; for (int i = 0; i < len; i++) init->children[i]->expr = new_num(str[i], tok); break; } default: unreachable(); } *rest = tok->next; } // array-designator = "[" const-expr "]" // // C99 added the designated initializer to the language, which allows // programmers to move the "cursor" of an initializer to any element. // The syntax looks like this: // // int x[10] = { 1, 2, [5]=3, 4, 5, 6, 7 }; // // `[5]` moves the cursor to the 5th element, so the 5th element of x // is set to 3. Initialization then continues forward in order, so // 6th, 7th, 8th and 9th elements are initialized with 4, 5, 6 and 7, // respectively. Unspecified elements (in this case, 3rd and 4th // elements) are initialized with zero. // // Nesting is allowed, so the following initializer is valid: // // int x[5][10] = { [5][8]=1, 2, 3 }; // // It sets x[5][8], x[5][9] and x[6][0] to 1, 2 and 3, respectively. // // Use `.fieldname` to move the cursor for a struct initializer. E.g. // // struct { int a, b, c; } x = { .c=5 }; // // The above initializer sets x.c to 5. static void array_designator(Token **rest, Token *tok, Type *ty, int *begin, int *end) { *begin = const_expr(&tok, tok->next); if (*begin >= ty->array_len) error_tok(tok, "array designator index exceeds array bounds"); if (equal(tok, "...")) { *end = const_expr(&tok, tok->next); if (*end >= ty->array_len) error_tok(tok, "array designator index exceeds array bounds"); if (*end < *begin) error_tok(tok, "array designator range [%d, %d] is empty", *begin, *end); } else { *end = *begin; } *rest = skip(tok, "]"); } // struct-designator = "." ident static Member *struct_designator(Token **rest, Token *tok, Type *ty) { Token *start = tok; tok = skip(tok, "."); if (tok->kind != TK_IDENT) error_tok(tok, "expected a field designator"); for (Member *mem = ty->members; mem; mem = mem->next) { // Anonymous struct member if (mem->ty->kind == TY_STRUCT && !mem->name) { if (get_struct_member(mem->ty, tok)) { *rest = start; return mem; } continue; } // Regular struct member if (mem->name->len == tok->len && !strncmp(mem->name->loc, tok->loc, tok->len)) { *rest = tok->next; return mem; } } error_tok(tok, "struct has no such member"); } // designation = ("[" const-expr "]" | "." ident)* "="? initializer static void designation(Token **rest, Token *tok, Initializer *init) { if (equal(tok, "[")) { if (init->ty->kind != TY_ARRAY) error_tok(tok, "array index in non-array initializer"); int begin, end; array_designator(&tok, tok, init->ty, &begin, &end); Token *tok2; for (int i = begin; i <= end; i++) designation(&tok2, tok, init->children[i]); array_initializer2(rest, tok2, init, begin + 1); return; } if (equal(tok, ".") && init->ty->kind == TY_STRUCT) { Member *mem = struct_designator(&tok, tok, init->ty); designation(&tok, tok, init->children[mem->idx]); init->expr = NULL; struct_initializer2(rest, tok, init, mem->next); return; } if (equal(tok, ".") && init->ty->kind == TY_UNION) { Member *mem = struct_designator(&tok, tok, init->ty); init->mem = mem; designation(rest, tok, init->children[mem->idx]); return; } if (equal(tok, ".")) error_tok(tok, "field name not in struct or union initializer"); if (equal(tok, "=")) tok = tok->next; initializer2(rest, tok, init); } // An array length can be omitted if an array has an initializer // (e.g. `int x[] = {1,2,3}`). If it's omitted, count the number // of initializer elements. static int count_array_init_elements(Token *tok, Type *ty) { bool first = true; Initializer *dummy = new_initializer(ty->base, true); int i = 0, max = 0; while (!consume_end(&tok, tok)) { if (!first) tok = skip(tok, ","); first = false; if (equal(tok, "[")) { i = const_expr(&tok, tok->next); if (equal(tok, "...")) i = const_expr(&tok, tok->next); tok = skip(tok, "]"); designation(&tok, tok, dummy); } else { initializer2(&tok, tok, dummy); } i++; max = MAX(max, i); } return max; } // array-initializer1 = "{" initializer ("," initializer)* ","? "}" static void array_initializer1(Token **rest, Token *tok, Initializer *init) { tok = skip(tok, "{"); if (init->is_flexible) { int len = count_array_init_elements(tok, init->ty); *init = *new_initializer(array_of(init->ty->base, len), false); } bool first = true; if (init->is_flexible) { int len = count_array_init_elements(tok, init->ty); *init = *new_initializer(array_of(init->ty->base, len), false); } for (int i = 0; !consume_end(rest, tok); i++) { if (!first) tok = skip(tok, ","); first = false; if (equal(tok, "[")) { int begin, end; array_designator(&tok, tok, init->ty, &begin, &end); Token *tok2; for (int j = begin; j <= end; j++) designation(&tok2, tok, init->children[j]); tok = tok2; i = end; continue; } if (i < init->ty->array_len) initializer2(&tok, tok, init->children[i]); else tok = skip_excess_element(tok); } } // array-initializer2 = initializer ("," initializer)* static void array_initializer2(Token **rest, Token *tok, Initializer *init, int i) { if (init->is_flexible) { int len = count_array_init_elements(tok, init->ty); *init = *new_initializer(array_of(init->ty->base, len), false); } for (; i < init->ty->array_len && !is_end(tok); i++) { Token *start = tok; if (i > 0) tok = skip(tok, ","); if (equal(tok, "[") || equal(tok, ".")) { *rest = start; return; } initializer2(&tok, tok, init->children[i]); } *rest = tok; } // struct-initializer1 = "{" initializer ("," initializer)* ","? "}" static void struct_initializer1(Token **rest, Token *tok, Initializer *init) { tok = skip(tok, "{"); Member *mem = init->ty->members; bool first = true; while (!consume_end(rest, tok)) { if (!first) tok = skip(tok, ","); first = false; if (equal(tok, ".")) { mem = struct_designator(&tok, tok, init->ty); designation(&tok, tok, init->children[mem->idx]); mem = mem->next; continue; } if (mem) { initializer2(&tok, tok, init->children[mem->idx]); mem = mem->next; } else { tok = skip_excess_element(tok); } } } // struct-initializer2 = initializer ("," initializer)* static void struct_initializer2(Token **rest, Token *tok, Initializer *init, Member *mem) { bool first = true; for (; mem && !is_end(tok); mem = mem->next) { Token *start = tok; if (!first) tok = skip(tok, ","); first = false; if (equal(tok, "[") || equal(tok, ".")) { *rest = start; return; } initializer2(&tok, tok, init->children[mem->idx]); } *rest = tok; } static void union_initializer(Token **rest, Token *tok, Initializer *init) { // Unlike structs, union initializers take only one initializer, // and that initializes the first union member by default. // You can initialize other member using a designated initializer. if (equal(tok, "{") && equal(tok->next, ".")) { Member *mem = struct_designator(&tok, tok->next, init->ty); init->mem = mem; designation(&tok, tok, init->children[mem->idx]); *rest = skip(tok, "}"); return; } init->mem = init->ty->members; if (equal(tok, "{")) { initializer2(&tok, tok->next, init->children[0]); consume(&tok, tok, ","); *rest = skip(tok, "}"); } else { initializer2(rest, tok, init->children[0]); } } // initializer = string-initializer | array-initializer // | struct-initializer | union-initializer // | assign static void initializer2(Token **rest, Token *tok, Initializer *init) { if (init->ty->kind == TY_ARRAY && tok->kind == TK_STR) { string_initializer(rest, tok, init); return; } if (init->ty->kind == TY_ARRAY) { if (equal(tok, "{")) array_initializer1(rest, tok, init); else array_initializer2(rest, tok, init, 0); return; } if (init->ty->kind == TY_STRUCT) { if (equal(tok, "{")) { struct_initializer1(rest, tok, init); return; } // A struct can be initialized with another struct. E.g. // `struct T x = y;` where y is a variable of type `struct T`. // Handle that case first. Node *expr = assign(rest, tok); add_type(expr); if (expr->ty->kind == TY_STRUCT) { init->expr = expr; return; } struct_initializer2(rest, tok, init, init->ty->members); return; } if (init->ty->kind == TY_UNION) { union_initializer(rest, tok, init); return; } if (equal(tok, "{")) { // An initializer for a scalar variable can be surrounded by // braces. E.g. `int x = {3};`. Handle that case. initializer2(&tok, tok->next, init); *rest = skip(tok, "}"); return; } init->expr = assign(rest, tok); } static Type *copy_struct_type(Type *ty) { ty = copy_type(ty); Member head = {}; Member *cur = &head; for (Member *mem = ty->members; mem; mem = mem->next) { Member *m = calloc(1, sizeof(Member)); *m = *mem; cur = cur->next = m; } ty->members = head.next; return ty; } static Initializer *initializer(Token **rest, Token *tok, Type *ty, Type **new_ty) { Initializer *init = new_initializer(ty, true); initializer2(rest, tok, init); if ((ty->kind == TY_STRUCT || ty->kind == TY_UNION) && ty->is_flexible) { ty = copy_struct_type(ty); Member *mem = ty->members; while (mem->next) mem = mem->next; mem->ty = init->children[mem->idx]->ty; ty->size += mem->ty->size; *new_ty = ty; return init; } *new_ty = init->ty; return init; } static Node *init_desg_expr(InitDesg *desg, Token *tok) { if (desg->var) return new_var_node(desg->var, tok); if (desg->member) { Node *node = new_unary(ND_MEMBER, init_desg_expr(desg->next, tok), tok); node->member = desg->member; return node; } Node *lhs = init_desg_expr(desg->next, tok); Node *rhs = new_num(desg->idx, tok); return new_unary(ND_DEREF, new_add(lhs, rhs, tok), tok); } static Node *create_lvar_init(Initializer *init, Type *ty, InitDesg *desg, Token *tok) { if (ty->kind == TY_ARRAY) { Node *node = new_node(ND_NULL_EXPR, tok); for (int i = 0; i < ty->array_len; i++) { InitDesg desg2 = {desg, i}; Node *rhs = create_lvar_init(init->children[i], ty->base, &desg2, tok); node = new_binary(ND_COMMA, node, rhs, tok); } return node; } if (ty->kind == TY_STRUCT && !init->expr) { Node *node = new_node(ND_NULL_EXPR, tok); for (Member *mem = ty->members; mem; mem = mem->next) { InitDesg desg2 = {desg, 0, mem}; Node *rhs = create_lvar_init(init->children[mem->idx], mem->ty, &desg2, tok); node = new_binary(ND_COMMA, node, rhs, tok); } return node; } if (ty->kind == TY_UNION) { Member *mem = init->mem ? init->mem : ty->members; InitDesg desg2 = {desg, 0, mem}; return create_lvar_init(init->children[mem->idx], mem->ty, &desg2, tok); } if (!init->expr) return new_node(ND_NULL_EXPR, tok); Node *lhs = init_desg_expr(desg, tok); return new_binary(ND_ASSIGN, lhs, init->expr, tok); } // A variable definition with an initializer is a shorthand notation // for a variable definition followed by assignments. This function // generates assignment expressions for an initializer. For example, // `int x[2][2] = {{6, 7}, {8, 9}}` is converted to the following // expressions: // // x[0][0] = 6; // x[0][1] = 7; // x[1][0] = 8; // x[1][1] = 9; static Node *lvar_initializer(Token **rest, Token *tok, Obj *var) { Initializer *init = initializer(rest, tok, var->ty, &var->ty); InitDesg desg = {NULL, 0, NULL, var}; // If a partial initializer list is given, the standard requires // that unspecified elements are set to 0. Here, we simply // zero-initialize the entire memory region of a variable before // initializing it with user-supplied values. Node *lhs = new_node(ND_MEMZERO, tok); lhs->var = var; Node *rhs = create_lvar_init(init, var->ty, &desg, tok); return new_binary(ND_COMMA, lhs, rhs, tok); } static uint64_t read_buf(char *buf, int sz) { if (sz == 1) return *buf; if (sz == 2) return *(uint16_t *)buf; if (sz == 4) return *(uint32_t *)buf; if (sz == 8) return *(uint64_t *)buf; unreachable(); } static void write_buf(char *buf, uint64_t val, int sz) { if (sz == 1) *buf = val; else if (sz == 2) *(uint16_t *)buf = val; else if (sz == 4) *(uint32_t *)buf = val; else if (sz == 8) *(uint64_t *)buf = val; else unreachable(); } static Relocation * write_gvar_data(Relocation *cur, Initializer *init, Type *ty, char *buf, int offset) { if (ty->kind == TY_ARRAY) { int sz = ty->base->size; for (int i = 0; i < ty->array_len; i++) cur = write_gvar_data(cur, init->children[i], ty->base, buf, offset + sz * i); return cur; } if (ty->kind == TY_STRUCT) { for (Member *mem = ty->members; mem; mem = mem->next) { if (mem->is_bitfield) { Node *expr = init->children[mem->idx]->expr; if (!expr) break; char *loc = buf + offset + mem->offset; uint64_t oldval = read_buf(loc, mem->ty->size); uint64_t newval = eval(expr); uint64_t mask = (1L << mem->bit_width) - 1; uint64_t combined = oldval | ((newval & mask) << mem->bit_offset); write_buf(loc, combined, mem->ty->size); } else { cur = write_gvar_data(cur, init->children[mem->idx], mem->ty, buf, offset + mem->offset); } } return cur; } if (ty->kind == TY_UNION) { if (!init->mem) return cur; return write_gvar_data(cur, init->children[init->mem->idx], init->mem->ty, buf, offset); } if (!init->expr) return cur; if (ty->kind == TY_FLOAT) { *(float *)(buf + offset) = eval_double(init->expr); return cur; } if (ty->kind == TY_DOUBLE) { *(double *)(buf + offset) = eval_double(init->expr); return cur; } char **label = NULL; uint64_t val = eval2(init->expr, &label); if (!label) { write_buf(buf + offset, val, ty->size); return cur; } Relocation *rel = calloc(1, sizeof(Relocation)); rel->offset = offset; rel->label = label; rel->addend = val; cur->next = rel; return cur->next; } // Initializers for global variables are evaluated at compile-time and // embedded to .data section. This function serializes Initializer // objects to a flat byte array. It is a compile error if an // initializer list contains a non-constant expression. static void gvar_initializer(Token **rest, Token *tok, Obj *var) { Initializer *init = initializer(rest, tok, var->ty, &var->ty); Relocation head = {}; char *buf = calloc(1, var->ty->size); write_gvar_data(&head, init, var->ty, buf, 0); var->init_data = buf; var->rel = head.next; } // Returns true if a given token represents a type. static bool is_typename(Token *tok) { static HashMap map; if (map.capacity == 0) { static char *kw[] = { "void", "_Bool", "char", "short", "int", "long", "struct", "union", "typedef", "enum", "static", "extern", "_Alignas", "signed", "unsigned", "const", "volatile", "auto", "register", "restrict", "__restrict", "__restrict__", "_Noreturn", "float", "double", "typeof", "inline", "_Thread_local", "__thread", "_Atomic", }; for (int i = 0; i < sizeof(kw) / sizeof(*kw); i++) hashmap_put(&map, kw[i], (void *)1); } return hashmap_get2(&map, tok->loc, tok->len) || find_typedef(tok); } // asm-stmt = "asm" ("volatile" | "inline")* "(" string-literal ")" static Node *asm_stmt(Token **rest, Token *tok) { Node *node = new_node(ND_ASM, tok); tok = tok->next; while (equal(tok, "volatile") || equal(tok, "inline")) tok = tok->next; tok = skip(tok, "("); if (tok->kind != TK_STR || tok->ty->base->kind != TY_CHAR) error_tok(tok, "expected string literal"); node->asm_str = tok->str; *rest = skip(tok->next, ")"); return node; } // stmt = "return" expr? ";" // | "if" "(" expr ")" stmt ("else" stmt)? // | "switch" "(" expr ")" stmt // | "case" const-expr ("..." const-expr)? ":" stmt // | "default" ":" stmt // | "for" "(" expr-stmt expr? ";" expr? ")" stmt // | "while" "(" expr ")" stmt // | "do" stmt "while" "(" expr ")" ";" // | "asm" asm-stmt // | "goto" (ident | "*" expr) ";" // | "break" ";" // | "continue" ";" // | ident ":" stmt // | "{" compound-stmt // | expr-stmt static Node *stmt(Token **rest, Token *tok) { if (equal(tok, "return")) { Node *node = new_node(ND_RETURN, tok); if (consume(rest, tok->next, ";")) return node; Node *exp = expr(&tok, tok->next); *rest = skip(tok, ";"); add_type(exp); Type *ty = current_fn->ty->return_ty; if (ty->kind != TY_STRUCT && ty->kind != TY_UNION) exp = new_cast(exp, current_fn->ty->return_ty); node->lhs = exp; return node; } if (equal(tok, "if")) { Node *node = new_node(ND_IF, tok); tok = skip(tok->next, "("); node->cond = expr(&tok, tok); tok = skip(tok, ")"); node->then = stmt(&tok, tok); if (equal(tok, "else")) node->els = stmt(&tok, tok->next); *rest = tok; return node; } if (equal(tok, "switch")) { Node *node = new_node(ND_SWITCH, tok); tok = skip(tok->next, "("); node->cond = expr(&tok, tok); tok = skip(tok, ")"); Node *sw = current_switch; current_switch = node; char *brk = brk_label; brk_label = node->brk_label = new_unique_name(); node->then = stmt(rest, tok); current_switch = sw; brk_label = brk; return node; } if (equal(tok, "case")) { if (!current_switch) error_tok(tok, "stray case"); Node *node = new_node(ND_CASE, tok); int begin = const_expr(&tok, tok->next); int end; if (equal(tok, "...")) { // [GNU] Case ranges, e.g. "case 1 ... 5:" end = const_expr(&tok, tok->next); if (end < begin) error_tok(tok, "empty case range specified"); } else { end = begin; } tok = skip(tok, ":"); node->label = new_unique_name(); node->lhs = stmt(rest, tok); node->begin = begin; node->end = end; node->case_next = current_switch->case_next; current_switch->case_next = node; return node; } if (equal(tok, "default")) { if (!current_switch) error_tok(tok, "stray default"); Node *node = new_node(ND_CASE, tok); tok = skip(tok->next, ":"); node->label = new_unique_name(); node->lhs = stmt(rest, tok); current_switch->default_case = node; return node; } if (equal(tok, "for")) { Node *node = new_node(ND_FOR, tok); tok = skip(tok->next, "("); enter_scope(); char *brk = brk_label; char *cont = cont_label; brk_label = node->brk_label = new_unique_name(); cont_label = node->cont_label = new_unique_name(); if (is_typename(tok)) { Type *basety = declspec(&tok, tok, NULL); node->init = declaration(&tok, tok, basety, NULL); } else { node->init = expr_stmt(&tok, tok); } if (!equal(tok, ";")) node->cond = expr(&tok, tok); tok = skip(tok, ";"); if (!equal(tok, ")")) node->inc = expr(&tok, tok); tok = skip(tok, ")"); node->then = stmt(rest, tok); leave_scope(); brk_label = brk; cont_label = cont; return node; } if (equal(tok, "while")) { Node *node = new_node(ND_FOR, tok); tok = skip(tok->next, "("); node->cond = expr(&tok, tok); tok = skip(tok, ")"); char *brk = brk_label; char *cont = cont_label; brk_label = node->brk_label = new_unique_name(); cont_label = node->cont_label = new_unique_name(); node->then = stmt(rest, tok); brk_label = brk; cont_label = cont; return node; } if (equal(tok, "do")) { Node *node = new_node(ND_DO, tok); char *brk = brk_label; char *cont = cont_label; brk_label = node->brk_label = new_unique_name(); cont_label = node->cont_label = new_unique_name(); node->then = stmt(&tok, tok->next); brk_label = brk; cont_label = cont; tok = skip(tok, "while"); tok = skip(tok, "("); node->cond = expr(&tok, tok); tok = skip(tok, ")"); *rest = skip(tok, ";"); return node; } if (equal(tok, "asm")) return asm_stmt(rest, tok); if (equal(tok, "goto")) { if (equal(tok->next, "*")) { // [GNU] `goto *ptr` jumps to the address specified by `ptr`. Node *node = new_node(ND_GOTO_EXPR, tok); node->lhs = expr(&tok, tok->next->next); *rest = skip(tok, ";"); return node; } Node *node = new_node(ND_GOTO, tok); node->label = get_ident(tok->next); node->goto_next = gotos; gotos = node; *rest = skip(tok->next->next, ";"); return node; } if (equal(tok, "break")) { if (!brk_label) error_tok(tok, "stray break"); Node *node = new_node(ND_GOTO, tok); node->unique_label = brk_label; *rest = skip(tok->next, ";"); return node; } if (equal(tok, "continue")) { if (!cont_label) error_tok(tok, "stray continue"); Node *node = new_node(ND_GOTO, tok); node->unique_label = cont_label; *rest = skip(tok->next, ";"); return node; } if (tok->kind == TK_IDENT && equal(tok->next, ":")) { Node *node = new_node(ND_LABEL, tok); node->label = strndup(tok->loc, tok->len); node->unique_label = new_unique_name(); node->lhs = stmt(rest, tok->next->next); node->goto_next = labels; labels = node; return node; } if (equal(tok, "{")) return compound_stmt(rest, tok->next); return expr_stmt(rest, tok); } // compound-stmt = (typedef | declaration | stmt)* "}" static Node *compound_stmt(Token **rest, Token *tok) { Node *node = new_node(ND_BLOCK, tok); Node head = {}; Node *cur = &head; enter_scope(); while (!equal(tok, "}")) { if (is_typename(tok) && !equal(tok->next, ":")) { VarAttr attr = {}; Type *basety = declspec(&tok, tok, &attr); if (attr.is_typedef) { tok = parse_typedef(tok, basety); continue; } if (is_function(tok)) { tok = function(tok, basety, &attr); continue; } if (attr.is_extern) { tok = global_variable(tok, basety, &attr); continue; } cur = cur->next = declaration(&tok, tok, basety, &attr); } else { cur = cur->next = stmt(&tok, tok); } add_type(cur); } leave_scope(); node->body = head.next; *rest = tok->next; return node; } // expr-stmt = expr? ";" static Node *expr_stmt(Token **rest, Token *tok) { if (equal(tok, ";")) { *rest = tok->next; return new_node(ND_BLOCK, tok); } Node *node = new_node(ND_EXPR_STMT, tok); node->lhs = expr(&tok, tok); *rest = skip(tok, ";"); return node; } // expr = assign ("," expr)? static Node *expr(Token **rest, Token *tok) { Node *node = assign(&tok, tok); if (equal(tok, ",")) return new_binary(ND_COMMA, node, expr(rest, tok->next), tok); *rest = tok; return node; } static int64_t eval(Node *node) { return eval2(node, NULL); } // Evaluate a given node as a constant expression. // // A constant expression is either just a number or ptr+n where ptr // is a pointer to a global variable and n is a postiive/negative // number. The latter form is accepted only as an initialization // expression for a global variable. static int64_t eval2(Node *node, char ***label) { add_type(node); if (is_flonum(node->ty)) return eval_double(node); switch (node->kind) { case ND_ADD: return eval2(node->lhs, label) + eval(node->rhs); case ND_SUB: return eval2(node->lhs, label) - eval(node->rhs); case ND_MUL: return eval(node->lhs) * eval(node->rhs); case ND_DIV: if (node->ty->is_unsigned) return (uint64_t)eval(node->lhs) / eval(node->rhs); return eval(node->lhs) / eval(node->rhs); case ND_NEG: return -eval(node->lhs); case ND_MOD: if (node->ty->is_unsigned) return (uint64_t)eval(node->lhs) % eval(node->rhs); return eval(node->lhs) % eval(node->rhs); case ND_BITAND: return eval(node->lhs) & eval(node->rhs); case ND_BITOR: return eval(node->lhs) | eval(node->rhs); case ND_BITXOR: return eval(node->lhs) ^ eval(node->rhs); case ND_SHL: return eval(node->lhs) << eval(node->rhs); case ND_SHR: if (node->ty->is_unsigned && node->ty->size == 8) return (uint64_t)eval(node->lhs) >> eval(node->rhs); return eval(node->lhs) >> eval(node->rhs); case ND_EQ: return eval(node->lhs) == eval(node->rhs); case ND_NE: return eval(node->lhs) != eval(node->rhs); case ND_LT: if (node->lhs->ty->is_unsigned) return (uint64_t)eval(node->lhs) < eval(node->rhs); return eval(node->lhs) < eval(node->rhs); case ND_LE: if (node->lhs->ty->is_unsigned) return (uint64_t)eval(node->lhs) <= eval(node->rhs); return eval(node->lhs) <= eval(node->rhs); case ND_COND: return eval(node->cond) ? eval2(node->then, label) : eval2(node->els, label); case ND_COMMA: return eval2(node->rhs, label); case ND_NOT: return !eval(node->lhs); case ND_BITNOT: return ~eval(node->lhs); case ND_LOGAND: return eval(node->lhs) && eval(node->rhs); case ND_LOGOR: return eval(node->lhs) || eval(node->rhs); case ND_CAST: { int64_t val = eval2(node->lhs, label); if (is_integer(node->ty)) { switch (node->ty->size) { case 1: return node->ty->is_unsigned ? (uint8_t)val : (int8_t)val; case 2: return node->ty->is_unsigned ? (uint16_t)val : (int16_t)val; case 4: return node->ty->is_unsigned ? (uint32_t)val : (int32_t)val; } } return val; } case ND_ADDR: return eval_rval(node->lhs, label); case ND_LABEL_VAL: *label = &node->unique_label; return 0; case ND_MEMBER: if (!label) error_tok(node->tok, "not a compile-time constant"); if (node->ty->kind != TY_ARRAY) error_tok(node->tok, "invalid initializer"); return eval_rval(node->lhs, label) + node->member->offset; case ND_VAR: if (!label) error_tok(node->tok, "not a compile-time constant"); if (node->var->ty->kind != TY_ARRAY && node->var->ty->kind != TY_FUNC) error_tok(node->tok, "invalid initializer"); *label = &node->var->name; return 0; case ND_NUM: return node->val; } error_tok(node->tok, "not a compile-time constant"); } static int64_t eval_rval(Node *node, char ***label) { switch (node->kind) { case ND_VAR: if (node->var->is_local) error_tok(node->tok, "not a compile-time constant"); *label = &node->var->name; return 0; case ND_DEREF: return eval2(node->lhs, label); case ND_MEMBER: return eval_rval(node->lhs, label) + node->member->offset; } error_tok(node->tok, "invalid initializer"); } static bool is_const_expr(Node *node) { add_type(node); switch (node->kind) { case ND_ADD: case ND_SUB: case ND_MUL: case ND_DIV: case ND_BITAND: case ND_BITOR: case ND_BITXOR: case ND_SHL: case ND_SHR: case ND_EQ: case ND_NE: case ND_LT: case ND_LE: case ND_LOGAND: case ND_LOGOR: return is_const_expr(node->lhs) && is_const_expr(node->rhs); case ND_COND: if (!is_const_expr(node->cond)) return false; return is_const_expr(eval(node->cond) ? node->then : node->els); case ND_COMMA: return is_const_expr(node->rhs); case ND_NEG: case ND_NOT: case ND_BITNOT: case ND_CAST: return is_const_expr(node->lhs); case ND_NUM: return true; } return false; } int64_t const_expr(Token **rest, Token *tok) { Node *node = conditional(rest, tok); return eval(node); } static double eval_double(Node *node) { add_type(node); if (is_integer(node->ty)) { if (node->ty->is_unsigned) return (unsigned long)eval(node); return eval(node); } switch (node->kind) { case ND_ADD: return eval_double(node->lhs) + eval_double(node->rhs); case ND_SUB: return eval_double(node->lhs) - eval_double(node->rhs); case ND_MUL: return eval_double(node->lhs) * eval_double(node->rhs); case ND_DIV: return eval_double(node->lhs) / eval_double(node->rhs); case ND_NEG: return -eval_double(node->lhs); case ND_COND: return eval_double(node->cond) ? eval_double(node->then) : eval_double(node->els); case ND_COMMA: return eval_double(node->rhs); case ND_CAST: if (is_flonum(node->lhs->ty)) return eval_double(node->lhs); return eval(node->lhs); case ND_NUM: return node->fval; } error_tok(node->tok, "not a compile-time constant"); } // Convert op= operators to expressions containing an assignment. // // In general, `A op= C` is converted to ``tmp = &A, *tmp = *tmp op B`. // However, if a given expression is of form `A.x op= C`, the input is // converted to `tmp = &A, (*tmp).x = (*tmp).x op C` to handle assignments // to bitfields. static Node *to_assign(Node *binary) { add_type(binary->lhs); add_type(binary->rhs); Token *tok = binary->tok; // Convert `A.x op= C` to `tmp = &A, (*tmp).x = (*tmp).x op C`. if (binary->lhs->kind == ND_MEMBER) { Obj *var = new_lvar("", pointer_to(binary->lhs->lhs->ty)); Node *expr1 = new_binary(ND_ASSIGN, new_var_node(var, tok), new_unary(ND_ADDR, binary->lhs->lhs, tok), tok); Node *expr2 = new_unary(ND_MEMBER, new_unary(ND_DEREF, new_var_node(var, tok), tok), tok); expr2->member = binary->lhs->member; Node *expr3 = new_unary(ND_MEMBER, new_unary(ND_DEREF, new_var_node(var, tok), tok), tok); expr3->member = binary->lhs->member; Node *expr4 = new_binary(ND_ASSIGN, expr2, new_binary(binary->kind, expr3, binary->rhs, tok), tok); return new_binary(ND_COMMA, expr1, expr4, tok); } // If A is an atomic type, Convert `A op= B` to // // ({ // T1 *addr = &A; T2 val = (B); T1 old = *addr; T1 new; // do { // new = old op val; // } while (!atomic_compare_exchange_strong(addr, &old, new)); // new; // }) if (binary->lhs->ty->is_atomic) { Node head = {}; Node *cur = &head; Obj *addr = new_lvar("", pointer_to(binary->lhs->ty)); Obj *val = new_lvar("", binary->rhs->ty); Obj *old = new_lvar("", binary->lhs->ty); Obj *new = new_lvar("", binary->lhs->ty); cur = cur->next = new_unary(ND_EXPR_STMT, new_binary(ND_ASSIGN, new_var_node(addr, tok), new_unary(ND_ADDR, binary->lhs, tok), tok), tok); cur = cur->next = new_unary(ND_EXPR_STMT, new_binary(ND_ASSIGN, new_var_node(val, tok), binary->rhs, tok), tok); cur = cur->next = new_unary(ND_EXPR_STMT, new_binary(ND_ASSIGN, new_var_node(old, tok), new_unary(ND_DEREF, new_var_node(addr, tok), tok), tok), tok); Node *loop = new_node(ND_DO, tok); loop->brk_label = new_unique_name(); loop->cont_label = new_unique_name(); Node *body = new_binary(ND_ASSIGN, new_var_node(new, tok), new_binary(binary->kind, new_var_node(old, tok), new_var_node(val, tok), tok), tok); loop->then = new_node(ND_BLOCK, tok); loop->then->body = new_unary(ND_EXPR_STMT, body, tok); Node *cas = new_node(ND_CAS, tok); cas->cas_addr = new_var_node(addr, tok); cas->cas_old = new_unary(ND_ADDR, new_var_node(old, tok), tok); cas->cas_new = new_var_node(new, tok); loop->cond = new_unary(ND_NOT, cas, tok); cur = cur->next = loop; cur = cur->next = new_unary(ND_EXPR_STMT, new_var_node(new, tok), tok); Node *node = new_node(ND_STMT_EXPR, tok); node->body = head.next; return node; } // Convert `A op= B` to ``tmp = &A, *tmp = *tmp op B`. Obj *var = new_lvar("", pointer_to(binary->lhs->ty)); Node *expr1 = new_binary(ND_ASSIGN, new_var_node(var, tok), new_unary(ND_ADDR, binary->lhs, tok), tok); Node *expr2 = new_binary(ND_ASSIGN, new_unary(ND_DEREF, new_var_node(var, tok), tok), new_binary(binary->kind, new_unary(ND_DEREF, new_var_node(var, tok), tok), binary->rhs, tok), tok); return new_binary(ND_COMMA, expr1, expr2, tok); } // assign = conditional (assign-op assign)? // assign-op = "=" | "+=" | "-=" | "*=" | "/=" | "%=" | "&=" | "|=" | "^=" // | "<<=" | ">>=" static Node *assign(Token **rest, Token *tok) { Node *node = conditional(&tok, tok); if (equal(tok, "=")) return new_binary(ND_ASSIGN, node, assign(rest, tok->next), tok); if (equal(tok, "+=")) return to_assign(new_add(node, assign(rest, tok->next), tok)); if (equal(tok, "-=")) return to_assign(new_sub(node, assign(rest, tok->next), tok)); if (equal(tok, "*=")) return to_assign(new_binary(ND_MUL, node, assign(rest, tok->next), tok)); if (equal(tok, "/=")) return to_assign(new_binary(ND_DIV, node, assign(rest, tok->next), tok)); if (equal(tok, "%=")) return to_assign(new_binary(ND_MOD, node, assign(rest, tok->next), tok)); if (equal(tok, "&=")) return to_assign(new_binary(ND_BITAND, node, assign(rest, tok->next), tok)); if (equal(tok, "|=")) return to_assign(new_binary(ND_BITOR, node, assign(rest, tok->next), tok)); if (equal(tok, "^=")) return to_assign(new_binary(ND_BITXOR, node, assign(rest, tok->next), tok)); if (equal(tok, "<<=")) return to_assign(new_binary(ND_SHL, node, assign(rest, tok->next), tok)); if (equal(tok, ">>=")) return to_assign(new_binary(ND_SHR, node, assign(rest, tok->next), tok)); *rest = tok; return node; } // conditional = logor ("?" expr? ":" conditional)? static Node *conditional(Token **rest, Token *tok) { Node *cond = logor(&tok, tok); if (!equal(tok, "?")) { *rest = tok; return cond; } if (equal(tok->next, ":")) { // [GNU] Compile `a ?: b` as `tmp = a, tmp ? tmp : b`. add_type(cond); Obj *var = new_lvar("", cond->ty); Node *lhs = new_binary(ND_ASSIGN, new_var_node(var, tok), cond, tok); Node *rhs = new_node(ND_COND, tok); rhs->cond = new_var_node(var, tok); rhs->then = new_var_node(var, tok); rhs->els = conditional(rest, tok->next->next); return new_binary(ND_COMMA, lhs, rhs, tok); } Node *node = new_node(ND_COND, tok); node->cond = cond; node->then = expr(&tok, tok->next); tok = skip(tok, ":"); node->els = conditional(rest, tok); return node; } // logor = logand ("||" logand)* static Node *logor(Token **rest, Token *tok) { Node *node = logand(&tok, tok); while (equal(tok, "||")) { Token *start = tok; node = new_binary(ND_LOGOR, node, logand(&tok, tok->next), start); } *rest = tok; return node; } // logand = bitor ("&&" bitor)* static Node *logand(Token **rest, Token *tok) { Node *node = bitor(&tok, tok); while (equal(tok, "&&")) { Token *start = tok; node = new_binary(ND_LOGAND, node, bitor(&tok, tok->next), start); } *rest = tok; return node; } // bitor = bitxor ("|" bitxor)* static Node *bitor(Token **rest, Token *tok) { Node *node = bitxor(&tok, tok); while (equal(tok, "|")) { Token *start = tok; node = new_binary(ND_BITOR, node, bitxor(&tok, tok->next), start); } *rest = tok; return node; } // bitxor = bitand ("^" bitand)* static Node *bitxor(Token **rest, Token *tok) { Node *node = bitand(&tok, tok); while (equal(tok, "^")) { Token *start = tok; node = new_binary(ND_BITXOR, node, bitand(&tok, tok->next), start); } *rest = tok; return node; } // bitand = equality ("&" equality)* static Node *bitand(Token **rest, Token *tok) { Node *node = equality(&tok, tok); while (equal(tok, "&")) { Token *start = tok; node = new_binary(ND_BITAND, node, equality(&tok, tok->next), start); } *rest = tok; return node; } // equality = relational ("==" relational | "!=" relational)* static Node *equality(Token **rest, Token *tok) { Node *node = relational(&tok, tok); for (;;) { Token *start = tok; if (equal(tok, "==")) { node = new_binary(ND_EQ, node, relational(&tok, tok->next), start); continue; } if (equal(tok, "!=")) { node = new_binary(ND_NE, node, relational(&tok, tok->next), start); continue; } *rest = tok; return node; } } // relational = shift ("<" shift | "<=" shift | ">" shift | ">=" shift)* static Node *relational(Token **rest, Token *tok) { Node *node = shift(&tok, tok); for (;;) { Token *start = tok; if (equal(tok, "<")) { node = new_binary(ND_LT, node, shift(&tok, tok->next), start); continue; } if (equal(tok, "<=")) { node = new_binary(ND_LE, node, shift(&tok, tok->next), start); continue; } if (equal(tok, ">")) { node = new_binary(ND_LT, shift(&tok, tok->next), node, start); continue; } if (equal(tok, ">=")) { node = new_binary(ND_LE, shift(&tok, tok->next), node, start); continue; } *rest = tok; return node; } } // shift = add ("<<" add | ">>" add)* static Node *shift(Token **rest, Token *tok) { Node *node = add(&tok, tok); for (;;) { Token *start = tok; if (equal(tok, "<<")) { node = new_binary(ND_SHL, node, add(&tok, tok->next), start); continue; } if (equal(tok, ">>")) { node = new_binary(ND_SHR, node, add(&tok, tok->next), start); continue; } *rest = tok; return node; } } // In C, `+` operator is overloaded to perform the pointer arithmetic. // If p is a pointer, p+n adds not n but sizeof(*p)*n to the value of p, // so that p+n points to the location n elements (not bytes) ahead of p. // In other words, we need to scale an integer value before adding to a // pointer value. This function takes care of the scaling. static Node *new_add(Node *lhs, Node *rhs, Token *tok) { add_type(lhs); add_type(rhs); // num + num if (is_numeric(lhs->ty) && is_numeric(rhs->ty)) return new_binary(ND_ADD, lhs, rhs, tok); if (lhs->ty->base && rhs->ty->base) error_tok(tok, "invalid operands"); // Canonicalize `num + ptr` to `ptr + num`. if (!lhs->ty->base && rhs->ty->base) { Node *tmp = lhs; lhs = rhs; rhs = tmp; } // VLA + num if (lhs->ty->base->kind == TY_VLA) { rhs = new_binary(ND_MUL, rhs, new_var_node(lhs->ty->base->vla_size, tok), tok); return new_binary(ND_ADD, lhs, rhs, tok); } // ptr + num rhs = new_binary(ND_MUL, rhs, new_long(lhs->ty->base->size, tok), tok); return new_binary(ND_ADD, lhs, rhs, tok); } // Like `+`, `-` is overloaded for the pointer type. static Node *new_sub(Node *lhs, Node *rhs, Token *tok) { add_type(lhs); add_type(rhs); // num - num if (is_numeric(lhs->ty) && is_numeric(rhs->ty)) return new_binary(ND_SUB, lhs, rhs, tok); // VLA + num if (lhs->ty->base->kind == TY_VLA) { rhs = new_binary(ND_MUL, rhs, new_var_node(lhs->ty->base->vla_size, tok), tok); add_type(rhs); Node *node = new_binary(ND_SUB, lhs, rhs, tok); node->ty = lhs->ty; return node; } // ptr - num if (lhs->ty->base && is_integer(rhs->ty)) { rhs = new_binary(ND_MUL, rhs, new_long(lhs->ty->base->size, tok), tok); add_type(rhs); Node *node = new_binary(ND_SUB, lhs, rhs, tok); node->ty = lhs->ty; return node; } // ptr - ptr, which returns how many elements are between the two. if (lhs->ty->base && rhs->ty->base) { Node *node = new_binary(ND_SUB, lhs, rhs, tok); node->ty = ty_long; return new_binary(ND_DIV, node, new_num(lhs->ty->base->size, tok), tok); } error_tok(tok, "invalid operands"); } // add = mul ("+" mul | "-" mul)* static Node *add(Token **rest, Token *tok) { Node *node = mul(&tok, tok); for (;;) { Token *start = tok; if (equal(tok, "+")) { node = new_add(node, mul(&tok, tok->next), start); continue; } if (equal(tok, "-")) { node = new_sub(node, mul(&tok, tok->next), start); continue; } *rest = tok; return node; } } // mul = cast ("*" cast | "/" cast | "%" cast)* static Node *mul(Token **rest, Token *tok) { Node *node = cast(&tok, tok); for (;;) { Token *start = tok; if (equal(tok, "*")) { node = new_binary(ND_MUL, node, cast(&tok, tok->next), start); continue; } if (equal(tok, "/")) { node = new_binary(ND_DIV, node, cast(&tok, tok->next), start); continue; } if (equal(tok, "%")) { node = new_binary(ND_MOD, node, cast(&tok, tok->next), start); continue; } *rest = tok; return node; } } // cast = "(" type-name ")" cast | unary static Node *cast(Token **rest, Token *tok) { if (equal(tok, "(") && is_typename(tok->next)) { Token *start = tok; Type *ty = typename(&tok, tok->next); tok = skip(tok, ")"); // compound literal if (equal(tok, "{")) return unary(rest, start); // type cast Node *node = new_cast(cast(rest, tok), ty); node->tok = start; return node; } return unary(rest, tok); } // unary = ("+" | "-" | "*" | "&" | "!" | "~") cast // | ("++" | "--") unary // | "&&" ident // | postfix static Node *unary(Token **rest, Token *tok) { if (equal(tok, "+")) return cast(rest, tok->next); if (equal(tok, "-")) return new_unary(ND_NEG, cast(rest, tok->next), tok); if (equal(tok, "&")) { Node *lhs = cast(rest, tok->next); add_type(lhs); if (lhs->kind == ND_MEMBER && lhs->member->is_bitfield) error_tok(tok, "cannot take address of bitfield"); return new_unary(ND_ADDR, lhs, tok); } if (equal(tok, "*")) { // [https://www.sigbus.info/n1570#6.5.3.2p4] This is an oddity // in the C spec, but dereferencing a function shouldn't do // anything. If foo is a function, `*foo`, `**foo` or `*****foo` // are all equivalent to just `foo`. Node *node = cast(rest, tok->next); add_type(node); if (node->ty->kind == TY_FUNC) return node; return new_unary(ND_DEREF, node, tok); } if (equal(tok, "!")) return new_unary(ND_NOT, cast(rest, tok->next), tok); if (equal(tok, "~")) return new_unary(ND_BITNOT, cast(rest, tok->next), tok); // Read ++i as i+=1 if (equal(tok, "++")) return to_assign(new_add(unary(rest, tok->next), new_num(1, tok), tok)); // Read --i as i-=1 if (equal(tok, "--")) return to_assign(new_sub(unary(rest, tok->next), new_num(1, tok), tok)); // [GNU] labels-as-values if (equal(tok, "&&")) { Node *node = new_node(ND_LABEL_VAL, tok); node->label = get_ident(tok->next); node->goto_next = gotos; gotos = node; *rest = tok->next->next; return node; } return postfix(rest, tok); } // struct-members = (declspec declarator ("," declarator)* ";")* static void struct_members(Token **rest, Token *tok, Type *ty) { Member head = {}; Member *cur = &head; int idx = 0; while (!equal(tok, "}")) { VarAttr attr = {}; Type *basety = declspec(&tok, tok, &attr); bool first = true; // Anonymous struct member if ((basety->kind == TY_STRUCT || basety->kind == TY_UNION) && consume(&tok, tok, ";")) { Member *mem = calloc(1, sizeof(Member)); mem->ty = basety; mem->idx = idx++; mem->align = attr.align ? attr.align : mem->ty->align; cur = cur->next = mem; continue; } // Regular struct members while (!consume(&tok, tok, ";")) { if (!first) tok = skip(tok, ","); first = false; Member *mem = calloc(1, sizeof(Member)); mem->ty = declarator(&tok, tok, basety); mem->name = mem->ty->name; mem->idx = idx++; mem->align = attr.align ? attr.align : mem->ty->align; if (consume(&tok, tok, ":")) { mem->is_bitfield = true; mem->bit_width = const_expr(&tok, tok); } cur = cur->next = mem; } } // If the last element is an array of incomplete type, it's // called a "flexible array member". It should behave as if // if were a zero-sized array. if (cur != &head && cur->ty->kind == TY_ARRAY && cur->ty->array_len < 0) { cur->ty = array_of(cur->ty->base, 0); ty->is_flexible = true; } *rest = tok->next; ty->members = head.next; } // attribute = ("__attribute__" "(" "(" "packed" ")" ")")* static Token *attribute_list(Token *tok, Type *ty) { while (consume(&tok, tok, "__attribute__")) { tok = skip(tok, "("); tok = skip(tok, "("); bool first = true; while (!consume(&tok, tok, ")")) { if (!first) tok = skip(tok, ","); first = false; if (consume(&tok, tok, "packed")) { ty->is_packed = true; continue; } if (consume(&tok, tok, "aligned")) { tok = skip(tok, "("); ty->align = const_expr(&tok, tok); tok = skip(tok, ")"); continue; } error_tok(tok, "unknown attribute"); } tok = skip(tok, ")"); } return tok; } // struct-union-decl = attribute? ident? ("{" struct-members)? static Type *struct_union_decl(Token **rest, Token *tok) { Type *ty = struct_type(); tok = attribute_list(tok, ty); // Read a tag. Token *tag = NULL; if (tok->kind == TK_IDENT) { tag = tok; tok = tok->next; } if (tag && !equal(tok, "{")) { *rest = tok; Type *ty2 = find_tag(tag); if (ty2) return ty2; ty->size = -1; push_tag_scope(tag, ty); return ty; } tok = skip(tok, "{"); // Construct a struct object. struct_members(&tok, tok, ty); *rest = attribute_list(tok, ty); if (tag) { // If this is a redefinition, overwrite a previous type. // Otherwise, register the struct type. Type *ty2 = hashmap_get2(&scope->tags, tag->loc, tag->len); if (ty2) { *ty2 = *ty; return ty2; } push_tag_scope(tag, ty); } return ty; } // struct-decl = struct-union-decl static Type *struct_decl(Token **rest, Token *tok) { Type *ty = struct_union_decl(rest, tok); ty->kind = TY_STRUCT; if (ty->size < 0) return ty; // Assign offsets within the struct to members. int bits = 0; for (Member *mem = ty->members; mem; mem = mem->next) { if (mem->is_bitfield && mem->bit_width == 0) { // Zero-width anonymous bitfield has a special meaning. // It affects only alignment. bits = align_to(bits, mem->ty->size * 8); } else if (mem->is_bitfield) { int sz = mem->ty->size; if (bits / (sz * 8) != (bits + mem->bit_width - 1) / (sz * 8)) bits = align_to(bits, sz * 8); mem->offset = align_down(bits / 8, sz); mem->bit_offset = bits % (sz * 8); bits += mem->bit_width; } else { if (!ty->is_packed) bits = align_to(bits, mem->align * 8); mem->offset = bits / 8; bits += mem->ty->size * 8; } if (!ty->is_packed && ty->align < mem->align) ty->align = mem->align; } ty->size = align_to(bits, ty->align * 8) / 8; return ty; } // union-decl = struct-union-decl static Type *union_decl(Token **rest, Token *tok) { Type *ty = struct_union_decl(rest, tok); ty->kind = TY_UNION; if (ty->size < 0) return ty; // If union, we don't have to assign offsets because they // are already initialized to zero. We need to compute the // alignment and the size though. for (Member *mem = ty->members; mem; mem = mem->next) { if (ty->align < mem->align) ty->align = mem->align; if (ty->size < mem->ty->size) ty->size = mem->ty->size; } ty->size = align_to(ty->size, ty->align); return ty; } // Find a struct member by name. static Member *get_struct_member(Type *ty, Token *tok) { for (Member *mem = ty->members; mem; mem = mem->next) { // Anonymous struct member if ((mem->ty->kind == TY_STRUCT || mem->ty->kind == TY_UNION) && !mem->name) { if (get_struct_member(mem->ty, tok)) return mem; continue; } // Regular struct member if (mem->name->len == tok->len && !strncmp(mem->name->loc, tok->loc, tok->len)) return mem; } return NULL; } // Create a node representing a struct member access, such as foo.bar // where foo is a struct and bar is a member name. // // C has a feature called "anonymous struct" which allows a struct to // have another unnamed struct as a member like this: // // struct { struct { int a; }; int b; } x; // // The members of an anonymous struct belong to the outer struct's // member namespace. Therefore, in the above example, you can access // member "a" of the anonymous struct as "x.a". // // This function takes care of anonymous structs. static Node *struct_ref(Node *node, Token *tok) { add_type(node); if (node->ty->kind != TY_STRUCT && node->ty->kind != TY_UNION) error_tok(node->tok, "not a struct nor a union"); Type *ty = node->ty; for (;;) { Member *mem = get_struct_member(ty, tok); if (!mem) error_tok(tok, "no such member"); node = new_unary(ND_MEMBER, node, tok); node->member = mem; if (mem->name) break; ty = mem->ty; } return node; } // Convert A++ to `(typeof A)((A += 1) - 1)` static Node *new_inc_dec(Node *node, Token *tok, int addend) { add_type(node); return new_cast(new_add(to_assign(new_add(node, new_num(addend, tok), tok)), new_num(-addend, tok), tok), node->ty); } // postfix = "(" type-name ")" "{" initializer-list "}" // = ident "(" func-args ")" postfix-tail* // | primary postfix-tail* // // postfix-tail = "[" expr "]" // | "(" func-args ")" // | "." ident // | "->" ident // | "++" // | "--" static Node *postfix(Token **rest, Token *tok) { if (equal(tok, "(") && is_typename(tok->next)) { // Compound literal Token *start = tok; Type *ty = typename(&tok, tok->next); tok = skip(tok, ")"); if (scope->next == NULL) { Obj *var = new_anon_gvar(ty); gvar_initializer(rest, tok, var); return new_var_node(var, start); } Obj *var = new_lvar("", ty); Node *lhs = lvar_initializer(rest, tok, var); Node *rhs = new_var_node(var, tok); return new_binary(ND_COMMA, lhs, rhs, start); } Node *node = primary(&tok, tok); for (;;) { if (equal(tok, "(")) { node = funcall(&tok, tok->next, node); continue; } if (equal(tok, "[")) { // x[y] is short for *(x+y) Token *start = tok; Node *idx = expr(&tok, tok->next); tok = skip(tok, "]"); node = new_unary(ND_DEREF, new_add(node, idx, start), start); continue; } if (equal(tok, ".")) { node = struct_ref(node, tok->next); tok = tok->next->next; continue; } if (equal(tok, "->")) { // x->y is short for (*x).y node = new_unary(ND_DEREF, node, tok); node = struct_ref(node, tok->next); tok = tok->next->next; continue; } if (equal(tok, "++")) { node = new_inc_dec(node, tok, 1); tok = tok->next; continue; } if (equal(tok, "--")) { node = new_inc_dec(node, tok, -1); tok = tok->next; continue; } *rest = tok; return node; } } // funcall = (assign ("," assign)*)? ")" static Node *funcall(Token **rest, Token *tok, Node *fn) { add_type(fn); if (fn->ty->kind != TY_FUNC && (fn->ty->kind != TY_PTR || fn->ty->base->kind != TY_FUNC)) error_tok(fn->tok, "not a function"); Type *ty = (fn->ty->kind == TY_FUNC) ? fn->ty : fn->ty->base; Type *param_ty = ty->params; Node head = {}; Node *cur = &head; while (!equal(tok, ")")) { if (cur != &head) tok = skip(tok, ","); Node *arg = assign(&tok, tok); add_type(arg); if (!param_ty && !ty->is_variadic) error_tok(tok, "too many arguments"); if (param_ty) { if (param_ty->kind != TY_STRUCT && param_ty->kind != TY_UNION) arg = new_cast(arg, param_ty); param_ty = param_ty->next; } else if (arg->ty->kind == TY_FLOAT) { // If parameter type is omitted (e.g. in "..."), float // arguments are promoted to double. arg = new_cast(arg, ty_double); } cur = cur->next = arg; } if (param_ty) error_tok(tok, "too few arguments"); *rest = skip(tok, ")"); Node *node = new_unary(ND_FUNCALL, fn, tok); node->func_ty = ty; node->ty = ty->return_ty; node->args = head.next; // If a function returns a struct, it is caller's responsibility // to allocate a space for the return value. if (node->ty->kind == TY_STRUCT || node->ty->kind == TY_UNION) node->ret_buffer = new_lvar("", node->ty); return node; } // generic-selection = "(" assign "," generic-assoc ("," generic-assoc)* ")" // // generic-assoc = type-name ":" assign // | "default" ":" assign static Node *generic_selection(Token **rest, Token *tok) { Token *start = tok; tok = skip(tok, "("); Node *ctrl = assign(&tok, tok); add_type(ctrl); Type *t1 = ctrl->ty; if (t1->kind == TY_FUNC) t1 = pointer_to(t1); else if (t1->kind == TY_ARRAY) t1 = pointer_to(t1->base); Node *ret = NULL; while (!consume(rest, tok, ")")) { tok = skip(tok, ","); if (equal(tok, "default")) { tok = skip(tok->next, ":"); Node *node = assign(&tok, tok); if (!ret) ret = node; continue; } Type *t2 = typename(&tok, tok); tok = skip(tok, ":"); Node *node = assign(&tok, tok); if (is_compatible(t1, t2)) ret = node; } if (!ret) error_tok(start, "controlling expression type not compatible with" " any generic association type"); return ret; } // primary = "(" "{" stmt+ "}" ")" // | "(" expr ")" // | "sizeof" "(" type-name ")" // | "sizeof" unary // | "_Alignof" "(" type-name ")" // | "_Alignof" unary // | "_Generic" generic-selection // | "__builtin_types_compatible_p" "(" type-name, type-name, ")" // | "__builtin_reg_class" "(" type-name ")" // | ident // | str // | num static Node *primary(Token **rest, Token *tok) { Token *start = tok; if (equal(tok, "(") && equal(tok->next, "{")) { // This is a GNU statement expresssion. Node *node = new_node(ND_STMT_EXPR, tok); node->body = compound_stmt(&tok, tok->next->next)->body; *rest = skip(tok, ")"); return node; } if (equal(tok, "(")) { Node *node = expr(&tok, tok->next); *rest = skip(tok, ")"); return node; } if (equal(tok, "sizeof") && equal(tok->next, "(") && is_typename(tok->next->next)) { Type *ty = typename(&tok, tok->next->next); *rest = skip(tok, ")"); if (ty->kind == TY_VLA) { if (ty->vla_size) return new_var_node(ty->vla_size, tok); Node *lhs = compute_vla_size(ty, tok); Node *rhs = new_var_node(ty->vla_size, tok); return new_binary(ND_COMMA, lhs, rhs, tok); } return new_ulong(ty->size, start); } if (equal(tok, "sizeof")) { Node *node = unary(rest, tok->next); add_type(node); if (node->ty->kind == TY_VLA) return new_var_node(node->ty->vla_size, tok); return new_ulong(node->ty->size, tok); } if (equal(tok, "_Alignof") && equal(tok->next, "(") && is_typename(tok->next->next)) { Type *ty = typename(&tok, tok->next->next); *rest = skip(tok, ")"); return new_ulong(ty->align, tok); } if (equal(tok, "_Alignof")) { Node *node = unary(rest, tok->next); add_type(node); return new_ulong(node->ty->align, tok); } if (equal(tok, "_Generic")) return generic_selection(rest, tok->next); if (equal(tok, "__builtin_types_compatible_p")) { tok = skip(tok->next, "("); Type *t1 = typename(&tok, tok); tok = skip(tok, ","); Type *t2 = typename(&tok, tok); *rest = skip(tok, ")"); return new_num(is_compatible(t1, t2), start); } if (equal(tok, "__builtin_reg_class")) { tok = skip(tok->next, "("); Type *ty = typename(&tok, tok); *rest = skip(tok, ")"); if (is_integer(ty) || ty->kind == TY_PTR) return new_num(0, start); if (is_flonum(ty)) return new_num(1, start); return new_num(2, start); } if (equal(tok, "__builtin_compare_and_swap")) { Node *node = new_node(ND_CAS, tok); tok = skip(tok->next, "("); node->cas_addr = assign(&tok, tok); tok = skip(tok, ","); node->cas_old = assign(&tok, tok); tok = skip(tok, ","); node->cas_new = assign(&tok, tok); *rest = skip(tok, ")"); return node; } if (equal(tok, "__builtin_atomic_exchange")) { Node *node = new_node(ND_EXCH, tok); tok = skip(tok->next, "("); node->lhs = assign(&tok, tok); tok = skip(tok, ","); node->rhs = assign(&tok, tok); *rest = skip(tok, ")"); return node; } if (tok->kind == TK_IDENT) { // Variable or enum constant VarScope *sc = find_var(tok); *rest = tok->next; // For "static inline" function if (sc && sc->var && sc->var->is_function) { if (current_fn) strarray_push(¤t_fn->refs, sc->var->name); else sc->var->is_root = true; } if (sc) { if (sc->var) return new_var_node(sc->var, tok); if (sc->enum_ty) return new_num(sc->enum_val, tok); } if (equal(tok->next, "(")) error_tok(tok, "implicit declaration of a function"); error_tok(tok, "undefined variable"); } if (tok->kind == TK_STR) { Obj *var = new_string_literal(tok->str, tok->ty); *rest = tok->next; return new_var_node(var, tok); } if (tok->kind == TK_NUM) { Node *node; if (is_flonum(tok->ty)) { node = new_node(ND_NUM, tok); node->fval = tok->fval; } else { node = new_num(tok->val, tok); } node->ty = tok->ty; *rest = tok->next; return node; } error_tok(tok, "expected an expression"); } static Token *parse_typedef(Token *tok, Type *basety) { bool first = true; while (!consume(&tok, tok, ";")) { if (!first) tok = skip(tok, ","); first = false; Type *ty = declarator(&tok, tok, basety); if (!ty->name) error_tok(ty->name_pos, "typedef name omitted"); push_scope(get_ident(ty->name))->type_def = ty; } return tok; } static void create_param_lvars(Type *param) { if (param) { create_param_lvars(param->next); if (!param->name) error_tok(param->name_pos, "parameter name omitted"); new_lvar(get_ident(param->name), param); } } // This function matches gotos or labels-as-values with labels. // // We cannot resolve gotos as we parse a function because gotos // can refer a label that appears later in the function. // So, we need to do this after we parse the entire function. static void resolve_goto_labels(void) { for (Node *x = gotos; x; x = x->goto_next) { for (Node *y = labels; y; y = y->goto_next) { if (!strcmp(x->label, y->label)) { x->unique_label = y->unique_label; break; } } if (x->unique_label == NULL) error_tok(x->tok->next, "use of undeclared label"); } gotos = labels = NULL; } static Obj *find_func(char *name) { Scope *sc = scope; while (sc->next) sc = sc->next; VarScope *sc2 = hashmap_get(&sc->vars, name); if (sc2 && sc2->var && sc2->var->is_function) return sc2->var; return NULL; } static void mark_live(Obj *var) { if (!var->is_function || var->is_live) return; var->is_live = true; for (int i = 0; i < var->refs.len; i++) { Obj *fn = find_func(var->refs.data[i]); if (fn) mark_live(fn); } } static Token *function(Token *tok, Type *basety, VarAttr *attr) { Type *ty = declarator(&tok, tok, basety); if (!ty->name) error_tok(ty->name_pos, "function name omitted"); char *name_str = get_ident(ty->name); Obj *fn = find_func(name_str); if (fn) { // Redeclaration if (!fn->is_function) error_tok(tok, "redeclared as a different kind of symbol"); if (fn->is_definition && equal(tok, "{")) error_tok(tok, "redefinition of %s", name_str); if (!fn->is_static && attr->is_static) error_tok(tok, "static declaration follows a non-static declaration"); fn->is_definition = fn->is_definition || equal(tok, "{"); } else { fn = new_gvar(name_str, ty); fn->is_function = true; fn->is_definition = equal(tok, "{"); fn->is_static = attr->is_static || (attr->is_inline && !attr->is_extern); fn->is_inline = attr->is_inline; } fn->is_root = !(fn->is_static && fn->is_inline); if (consume(&tok, tok, ";")) return tok; current_fn = fn; locals = NULL; enter_scope(); create_param_lvars(ty->params); // A buffer for a struct/union return value is passed // as the hidden first parameter. Type *rty = ty->return_ty; if ((rty->kind == TY_STRUCT || rty->kind == TY_UNION) && rty->size > 16) new_lvar("", pointer_to(rty)); fn->params = locals; if (ty->is_variadic) fn->va_area = new_lvar("__va_area__", array_of(ty_char, 136)); fn->alloca_bottom = new_lvar("__alloca_size__", pointer_to(ty_char)); tok = skip(tok, "{"); // [https://www.sigbus.info/n1570#6.4.2.2p1] "__func__" is // automatically defined as a local variable containing the // current function name. push_scope("__func__")->var = new_string_literal(fn->name, array_of(ty_char, strlen(fn->name) + 1)); // [GNU] __FUNCTION__ is yet another name of __func__. push_scope("__FUNCTION__")->var = new_string_literal(fn->name, array_of(ty_char, strlen(fn->name) + 1)); fn->body = compound_stmt(&tok, tok); fn->locals = locals; leave_scope(); resolve_goto_labels(); return tok; } static Token *global_variable(Token *tok, Type *basety, VarAttr *attr) { bool first = true; while (!consume(&tok, tok, ";")) { if (!first) tok = skip(tok, ","); first = false; Type *ty = declarator(&tok, tok, basety); if (!ty->name) error_tok(ty->name_pos, "variable name omitted"); Obj *var = new_gvar(get_ident(ty->name), ty); var->is_definition = !attr->is_extern; var->is_static = attr->is_static; var->is_tls = attr->is_tls; if (attr->align) var->align = attr->align; if (equal(tok, "=")) gvar_initializer(&tok, tok->next, var); else if (!attr->is_extern && !attr->is_tls) var->is_tentative = true; } return tok; } // Lookahead tokens and returns true if a given token is a start // of a function definition or declaration. static bool is_function(Token *tok) { if (equal(tok, ";")) return false; Type dummy = {}; Type *ty = declarator(&tok, tok, &dummy); return ty->kind == TY_FUNC; } // Remove redundant tentative definitions. static void scan_globals(void) { Obj head; Obj *cur = &head; for (Obj *var = globals; var; var = var->next) { if (!var->is_tentative) { cur = cur->next = var; continue; } // Find another definition of the same identifier. Obj *var2 = globals; for (; var2; var2 = var2->next) if (var != var2 && var2->is_definition && !strcmp(var->name, var2->name)) break; // If there's another definition, the tentative definition // is redundant if (!var2) cur = cur->next = var; } cur->next = NULL; globals = head.next; } static void declare_builtin_functions(void) { Type *ty = func_type(pointer_to(ty_void)); ty->params = copy_type(ty_int); builtin_alloca = new_gvar("alloca", ty); builtin_alloca->is_definition = false; } // program = (typedef | function-definition | global-variable)* Obj *parse(Token *tok) { declare_builtin_functions(); globals = NULL; while (tok->kind != TK_EOF) { VarAttr attr = {}; Type *basety = declspec(&tok, tok, &attr); // Typedef if (attr.is_typedef) { tok = parse_typedef(tok, basety); continue; } // Function if (is_function(tok)) { tok = function(tok, basety, &attr); continue; } // Global variable tok = global_variable(tok, basety, &attr); } for (Obj *var = globals; var; var = var->next) if (var->is_root) mark_live(var); // Remove redundant tentative definitions. scan_globals(); return globals; }