diff options
Diffstat (limited to 'src/3p/udis86/decode.c')
-rw-r--r-- | src/3p/udis86/decode.c | 1266 |
1 files changed, 1266 insertions, 0 deletions
diff --git a/src/3p/udis86/decode.c b/src/3p/udis86/decode.c new file mode 100644 index 0000000..036b9ed --- /dev/null +++ b/src/3p/udis86/decode.c @@ -0,0 +1,1266 @@ +/* udis86 - libudis86/decode.c + * + * Copyright (c) 2002-2009 Vivek Thampi + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * + * * Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR + * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON + * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ +#include "udint.h" +#include "types.h" +#include "extern.h" +#include "decode.h" + +#ifndef __UD_STANDALONE__ +# include <string.h> +#endif /* __UD_STANDALONE__ */ + +/* The max number of prefixes to an instruction */ +#define MAX_PREFIXES 15 + +/* rex prefix bits */ +#define REX_W(r) ( ( 0xF & ( r ) ) >> 3 ) +#define REX_R(r) ( ( 0x7 & ( r ) ) >> 2 ) +#define REX_X(r) ( ( 0x3 & ( r ) ) >> 1 ) +#define REX_B(r) ( ( 0x1 & ( r ) ) >> 0 ) +#define REX_PFX_MASK(n) ( ( P_REXW(n) << 3 ) | \ + ( P_REXR(n) << 2 ) | \ + ( P_REXX(n) << 1 ) | \ + ( P_REXB(n) << 0 ) ) + +/* scable-index-base bits */ +#define SIB_S(b) ( ( b ) >> 6 ) +#define SIB_I(b) ( ( ( b ) >> 3 ) & 7 ) +#define SIB_B(b) ( ( b ) & 7 ) + +/* modrm bits */ +#define MODRM_REG(b) ( ( ( b ) >> 3 ) & 7 ) +#define MODRM_NNN(b) ( ( ( b ) >> 3 ) & 7 ) +#define MODRM_MOD(b) ( ( ( b ) >> 6 ) & 3 ) +#define MODRM_RM(b) ( ( b ) & 7 ) + +static int decode_ext(struct ud *u, uint16_t ptr); +static int decode_opcode(struct ud *u); + +enum reg_class { /* register classes */ + REGCLASS_GPR, + REGCLASS_MMX, + REGCLASS_CR, + REGCLASS_DB, + REGCLASS_SEG, + REGCLASS_XMM +}; + + /* + * inp_start + * Should be called before each de-code operation. + */ +static void +inp_start(struct ud *u) +{ + u->inp_ctr = 0; +} + +static uint8_t +inp_peek(struct ud *u) +{ + if (u->inp_end == 0) { + if (u->inp_buf != NULL) { + if (u->inp_buf_index < u->inp_buf_size) { + return u->inp_buf[u->inp_buf_index]; + } + } else if (u->inp_peek != UD_EOI) { + return u->inp_peek; + } else { + int c; + if ((c = u->inp_hook(u)) != UD_EOI) { + u->inp_peek = c; + return u->inp_peek; + } + } + } + u->inp_end = 1; + UDERR(u, "byte expected, eoi received\n"); + return 0; +} + +static uint8_t +inp_next(struct ud *u) +{ + if (u->inp_end == 0) { + if (u->inp_buf != NULL) { + if (u->inp_buf_index < u->inp_buf_size) { + u->inp_ctr++; + return (u->inp_curr = u->inp_buf[u->inp_buf_index++]); + } + } else { + int c = u->inp_peek; + if (c != UD_EOI || (c = u->inp_hook(u)) != UD_EOI) { + u->inp_peek = UD_EOI; + u->inp_curr = c; + u->inp_sess[u->inp_ctr++] = u->inp_curr; + return u->inp_curr; + } + } + } + u->inp_end = 1; + UDERR(u, "byte expected, eoi received\n"); + return 0; +} + +static uint8_t +inp_curr(struct ud *u) +{ + return u->inp_curr; +} + + +/* + * inp_uint8 + * int_uint16 + * int_uint32 + * int_uint64 + * Load little-endian values from input + */ +static uint8_t +inp_uint8(struct ud* u) +{ + return inp_next(u); +} + +static uint16_t +inp_uint16(struct ud* u) +{ + uint16_t r, ret; + + ret = inp_next(u); + r = inp_next(u); + return ret | (r << 8); +} + +static uint32_t +inp_uint32(struct ud* u) +{ + uint32_t r, ret; + + ret = inp_next(u); + r = inp_next(u); + ret = ret | (r << 8); + r = inp_next(u); + ret = ret | (r << 16); + r = inp_next(u); + return ret | (r << 24); +} + +static uint64_t +inp_uint64(struct ud* u) +{ + uint64_t r, ret; + + ret = inp_next(u); + r = inp_next(u); + ret = ret | (r << 8); + r = inp_next(u); + ret = ret | (r << 16); + r = inp_next(u); + ret = ret | (r << 24); + r = inp_next(u); + ret = ret | (r << 32); + r = inp_next(u); + ret = ret | (r << 40); + r = inp_next(u); + ret = ret | (r << 48); + r = inp_next(u); + return ret | (r << 56); +} + + +static UD_INLINE int +eff_opr_mode(int dis_mode, int rex_w, int pfx_opr) +{ + if (dis_mode == 64) { + return rex_w ? 64 : (pfx_opr ? 16 : 32); + } else if (dis_mode == 32) { + return pfx_opr ? 16 : 32; + } else { + UD_ASSERT(dis_mode == 16); + return pfx_opr ? 32 : 16; + } +} + + +static UD_INLINE int +eff_adr_mode(int dis_mode, int pfx_adr) +{ + if (dis_mode == 64) { + return pfx_adr ? 32 : 64; + } else if (dis_mode == 32) { + return pfx_adr ? 16 : 32; + } else { + UD_ASSERT(dis_mode == 16); + return pfx_adr ? 32 : 16; + } +} + + +/* + * decode_prefixes + * + * Extracts instruction prefixes. + */ +static int +decode_prefixes(struct ud *u) +{ + int done = 0; + uint8_t curr = 0, last = 0; + UD_RETURN_ON_ERROR(u); + + do { + last = curr; + curr = inp_next(u); + UD_RETURN_ON_ERROR(u); + if (u->inp_ctr == MAX_INSN_LENGTH) { + UD_RETURN_WITH_ERROR(u, "max instruction length"); + } + + switch (curr) + { + case 0x2E: + u->pfx_seg = UD_R_CS; + break; + case 0x36: + u->pfx_seg = UD_R_SS; + break; + case 0x3E: + u->pfx_seg = UD_R_DS; + break; + case 0x26: + u->pfx_seg = UD_R_ES; + break; + case 0x64: + u->pfx_seg = UD_R_FS; + break; + case 0x65: + u->pfx_seg = UD_R_GS; + break; + case 0x67: /* adress-size override prefix */ + u->pfx_adr = 0x67; + break; + case 0xF0: + u->pfx_lock = 0xF0; + break; + case 0x66: + u->pfx_opr = 0x66; + break; + case 0xF2: + u->pfx_str = 0xf2; + break; + case 0xF3: + u->pfx_str = 0xf3; + break; + default: + /* consume if rex */ + done = (u->dis_mode == 64 && (curr & 0xF0) == 0x40) ? 0 : 1; + break; + } + } while (!done); + /* rex prefixes in 64bit mode, must be the last prefix */ + if (u->dis_mode == 64 && (last & 0xF0) == 0x40) { + u->pfx_rex = last; + } + return 0; +} + + +/* + * vex_l, vex_w + * Return the vex.L and vex.W bits + */ +static UD_INLINE uint8_t +vex_l(const struct ud *u) +{ + UD_ASSERT(u->vex_op != 0); + return ((u->vex_op == 0xc4 ? u->vex_b2 : u->vex_b1) >> 2) & 1; +} + +static UD_INLINE uint8_t +vex_w(const struct ud *u) +{ + UD_ASSERT(u->vex_op != 0); + return u->vex_op == 0xc4 ? ((u->vex_b2 >> 7) & 1) : 0; +} + + +static UD_INLINE uint8_t +modrm(struct ud * u) +{ + if ( !u->have_modrm ) { + u->modrm = inp_next( u ); + u->modrm_offset = (uint8_t) (u->inp_ctr - 1); + u->have_modrm = 1; + } + return u->modrm; +} + + +static unsigned int +resolve_operand_size(const struct ud* u, ud_operand_size_t osize) +{ + switch (osize) { + case SZ_V: + return u->opr_mode; + case SZ_Z: + return u->opr_mode == 16 ? 16 : 32; + case SZ_Y: + return u->opr_mode == 16 ? 32 : u->opr_mode; + case SZ_RDQ: + return u->dis_mode == 64 ? 64 : 32; + case SZ_X: + UD_ASSERT(u->vex_op != 0); + return (P_VEXL(u->itab_entry->prefix) && vex_l(u)) ? SZ_QQ : SZ_DQ; + default: + return osize; + } +} + + +static int resolve_mnemonic( struct ud* u ) +{ + /* resolve 3dnow weirdness. */ + if ( u->mnemonic == UD_I3dnow ) { + u->mnemonic = ud_itab[ u->le->table[ inp_curr( u ) ] ].mnemonic; + } + /* SWAPGS is only valid in 64bits mode */ + if ( u->mnemonic == UD_Iswapgs && u->dis_mode != 64 ) { + UDERR(u, "swapgs invalid in 64bits mode\n"); + return -1; + } + + if (u->mnemonic == UD_Ixchg) { + if ((u->operand[0].type == UD_OP_REG && u->operand[0].base == UD_R_AX && + u->operand[1].type == UD_OP_REG && u->operand[1].base == UD_R_AX) || + (u->operand[0].type == UD_OP_REG && u->operand[0].base == UD_R_EAX && + u->operand[1].type == UD_OP_REG && u->operand[1].base == UD_R_EAX)) { + u->operand[0].type = UD_NONE; + u->operand[1].type = UD_NONE; + u->mnemonic = UD_Inop; + } + } + + if (u->mnemonic == UD_Inop && u->pfx_repe) { + u->pfx_repe = 0; + u->mnemonic = UD_Ipause; + } + return 0; +} + + +/* ----------------------------------------------------------------------------- + * decode_a()- Decodes operands of the type seg:offset + * ----------------------------------------------------------------------------- + */ +static void +decode_a(struct ud* u, struct ud_operand *op) +{ + if (u->opr_mode == 16) { + /* seg16:off16 */ + op->type = UD_OP_PTR; + op->size = 32; + op->lval.ptr.off = inp_uint16(u); + op->lval.ptr.seg = inp_uint16(u); + } else { + /* seg16:off32 */ + op->type = UD_OP_PTR; + op->size = 48; + op->lval.ptr.off = inp_uint32(u); + op->lval.ptr.seg = inp_uint16(u); + } +} + +/* ----------------------------------------------------------------------------- + * decode_gpr() - Returns decoded General Purpose Register + * ----------------------------------------------------------------------------- + */ +static enum ud_type +decode_gpr(register struct ud* u, unsigned int s, unsigned char rm) +{ + switch (s) { + case 64: + return UD_R_RAX + rm; + case 32: + return UD_R_EAX + rm; + case 16: + return UD_R_AX + rm; + case 8: + if (u->dis_mode == 64 && u->pfx_rex) { + if (rm >= 4) + return UD_R_SPL + (rm-4); + return UD_R_AL + rm; + } else return UD_R_AL + rm; + case 0: + /* invalid size in case of a decode error */ + UD_ASSERT(u->error); + return UD_NONE; + default: + UD_ASSERT(!"invalid operand size"); + return UD_NONE; + } +} + +static void +decode_reg(struct ud *u, + struct ud_operand *opr, + int type, + int num, + int size) +{ + int reg; + size = resolve_operand_size(u, size); + switch (type) { + case REGCLASS_GPR : reg = decode_gpr(u, size, num); break; + case REGCLASS_MMX : reg = UD_R_MM0 + (num & 7); break; + case REGCLASS_XMM : + reg = num + (size == SZ_QQ ? UD_R_YMM0 : UD_R_XMM0); + break; + case REGCLASS_CR : reg = UD_R_CR0 + num; break; + case REGCLASS_DB : reg = UD_R_DR0 + num; break; + case REGCLASS_SEG : { + /* + * Only 6 segment registers, anything else is an error. + */ + if ((num & 7) > 5) { + UDERR(u, "invalid segment register value\n"); + return; + } else { + reg = UD_R_ES + (num & 7); + } + break; + } + default: + UD_ASSERT(!"invalid register type"); + return; + } + opr->type = UD_OP_REG; + opr->base = reg; + opr->size = size; +} + + +/* + * decode_imm + * + * Decode Immediate values. + */ +static void +decode_imm(struct ud* u, unsigned int size, struct ud_operand *op) +{ + op->size = resolve_operand_size(u, size); + op->type = UD_OP_IMM; + + switch (op->size) { + case 8: op->lval.sbyte = inp_uint8(u); break; + case 16: op->lval.uword = inp_uint16(u); break; + case 32: op->lval.udword = inp_uint32(u); break; + case 64: op->lval.uqword = inp_uint64(u); break; + default: return; + } +} + + +/* + * decode_mem_disp + * + * Decode mem address displacement. + */ +static void +decode_mem_disp(struct ud* u, unsigned int size, struct ud_operand *op) +{ + switch (size) { + case 8: + op->offset = 8; + op->lval.ubyte = inp_uint8(u); + break; + case 16: + op->offset = 16; + op->lval.uword = inp_uint16(u); + break; + case 32: + op->offset = 32; + op->lval.udword = inp_uint32(u); + break; + case 64: + op->offset = 64; + op->lval.uqword = inp_uint64(u); + break; + default: + return; + } +} + + +/* + * decode_modrm_reg + * + * Decodes reg field of mod/rm byte + * + */ +static UD_INLINE void +decode_modrm_reg(struct ud *u, + struct ud_operand *operand, + unsigned int type, + unsigned int size) +{ + uint8_t reg = (REX_R(u->_rex) << 3) | MODRM_REG(modrm(u)); + decode_reg(u, operand, type, reg, size); +} + + +/* + * decode_modrm_rm + * + * Decodes rm field of mod/rm byte + * + */ +static void +decode_modrm_rm(struct ud *u, + struct ud_operand *op, + unsigned char type, /* register type */ + unsigned int size) /* operand size */ + +{ + size_t offset = 0; + unsigned char mod, rm; + + /* get mod, r/m and reg fields */ + mod = MODRM_MOD(modrm(u)); + rm = (REX_B(u->_rex) << 3) | MODRM_RM(modrm(u)); + + /* + * If mod is 11b, then the modrm.rm specifies a register. + * + */ + if (mod == 3) { + decode_reg(u, op, type, rm, size); + return; + } + + /* + * !11b => Memory Address + */ + op->type = UD_OP_MEM; + op->size = resolve_operand_size(u, size); + + if (u->adr_mode == 64) { + op->base = UD_R_RAX + rm; + if (mod == 1) { + offset = 8; + } else if (mod == 2) { + offset = 32; + } else if (mod == 0 && (rm & 7) == 5) { + op->base = UD_R_RIP; + offset = 32; + } else { + offset = 0; + } + /* + * Scale-Index-Base (SIB) + */ + if ((rm & 7) == 4) { + inp_next(u); + + op->base = UD_R_RAX + (SIB_B(inp_curr(u)) | (REX_B(u->_rex) << 3)); + op->index = UD_R_RAX + (SIB_I(inp_curr(u)) | (REX_X(u->_rex) << 3)); + /* special conditions for base reference */ + if (op->index == UD_R_RSP) { + op->index = UD_NONE; + op->scale = UD_NONE; + } else { + op->scale = (1 << SIB_S(inp_curr(u))) & ~1; + } + + if (op->base == UD_R_RBP || op->base == UD_R_R13) { + if (mod == 0) { + op->base = UD_NONE; + } + if (mod == 1) { + offset = 8; + } else { + offset = 32; + } + } + } else { + op->scale = UD_NONE; + op->index = UD_NONE; + } + } else if (u->adr_mode == 32) { + op->base = UD_R_EAX + rm; + if (mod == 1) { + offset = 8; + } else if (mod == 2) { + offset = 32; + } else if (mod == 0 && rm == 5) { + op->base = UD_NONE; + offset = 32; + } else { + offset = 0; + } + + /* Scale-Index-Base (SIB) */ + if ((rm & 7) == 4) { + inp_next(u); + + op->scale = (1 << SIB_S(inp_curr(u))) & ~1; + op->index = UD_R_EAX + (SIB_I(inp_curr(u)) | (REX_X(u->pfx_rex) << 3)); + op->base = UD_R_EAX + (SIB_B(inp_curr(u)) | (REX_B(u->pfx_rex) << 3)); + + if (op->index == UD_R_ESP) { + op->index = UD_NONE; + op->scale = UD_NONE; + } + + /* special condition for base reference */ + if (op->base == UD_R_EBP) { + if (mod == 0) { + op->base = UD_NONE; + } + if (mod == 1) { + offset = 8; + } else { + offset = 32; + } + } + } else { + op->scale = UD_NONE; + op->index = UD_NONE; + } + } else { + const unsigned int bases[] = { UD_R_BX, UD_R_BX, UD_R_BP, UD_R_BP, + UD_R_SI, UD_R_DI, UD_R_BP, UD_R_BX }; + const unsigned int indices[] = { UD_R_SI, UD_R_DI, UD_R_SI, UD_R_DI, + UD_NONE, UD_NONE, UD_NONE, UD_NONE }; + op->base = bases[rm & 7]; + op->index = indices[rm & 7]; + op->scale = UD_NONE; + if (mod == 0 && rm == 6) { + offset = 16; + op->base = UD_NONE; + } else if (mod == 1) { + offset = 8; + } else if (mod == 2) { + offset = 16; + } + } + + if (offset) { + decode_mem_disp(u, offset, op); + } else { + op->offset = 0; + } +} + + +/* + * decode_moffset + * Decode offset-only memory operand + */ +static void +decode_moffset(struct ud *u, unsigned int size, struct ud_operand *opr) +{ + opr->type = UD_OP_MEM; + opr->base = UD_NONE; + opr->index = UD_NONE; + opr->scale = UD_NONE; + opr->size = resolve_operand_size(u, size); + decode_mem_disp(u, u->adr_mode, opr); +} + + +static void +decode_vex_vvvv(struct ud *u, struct ud_operand *opr, unsigned size) +{ + uint8_t vvvv; + UD_ASSERT(u->vex_op != 0); + vvvv = ((u->vex_op == 0xc4 ? u->vex_b2 : u->vex_b1) >> 3) & 0xf; + decode_reg(u, opr, REGCLASS_XMM, (0xf & ~vvvv), size); +} + + +/* + * decode_vex_immreg + * Decode source operand encoded in immediate byte [7:4] + */ +static int +decode_vex_immreg(struct ud *u, struct ud_operand *opr, unsigned size) +{ + uint8_t imm = inp_next(u); + uint8_t mask = u->dis_mode == 64 ? 0xf : 0x7; + UD_RETURN_ON_ERROR(u); + UD_ASSERT(u->vex_op != 0); + decode_reg(u, opr, REGCLASS_XMM, mask & (imm >> 4), size); + return 0; +} + + +/* + * decode_operand + * + * Decodes a single operand. + * Returns the type of the operand (UD_NONE if none) + */ +static int +decode_operand(struct ud *u, + struct ud_operand *operand, + enum ud_operand_code type, + unsigned int size) +{ + operand->type = UD_NONE; + operand->_oprcode = type; + + switch (type) { + case OP_A : + decode_a(u, operand); + break; + case OP_MR: + decode_modrm_rm(u, operand, REGCLASS_GPR, + MODRM_MOD(modrm(u)) == 3 ? + Mx_reg_size(size) : Mx_mem_size(size)); + break; + case OP_F: + u->br_far = 1; + /* intended fall through */ + case OP_M: + if (MODRM_MOD(modrm(u)) == 3) { + UDERR(u, "expected modrm.mod != 3\n"); + } + /* intended fall through */ + case OP_E: + decode_modrm_rm(u, operand, REGCLASS_GPR, size); + break; + case OP_G: + decode_modrm_reg(u, operand, REGCLASS_GPR, size); + break; + case OP_sI: + case OP_I: + decode_imm(u, size, operand); + break; + case OP_I1: + operand->type = UD_OP_CONST; + operand->lval.udword = 1; + break; + case OP_N: + if (MODRM_MOD(modrm(u)) != 3) { + UDERR(u, "expected modrm.mod == 3\n"); + } + /* intended fall through */ + case OP_Q: + decode_modrm_rm(u, operand, REGCLASS_MMX, size); + break; + case OP_P: + decode_modrm_reg(u, operand, REGCLASS_MMX, size); + break; + case OP_U: + if (MODRM_MOD(modrm(u)) != 3) { + UDERR(u, "expected modrm.mod == 3\n"); + } + /* intended fall through */ + case OP_W: + decode_modrm_rm(u, operand, REGCLASS_XMM, size); + break; + case OP_V: + decode_modrm_reg(u, operand, REGCLASS_XMM, size); + break; + case OP_H: + decode_vex_vvvv(u, operand, size); + break; + case OP_MU: + decode_modrm_rm(u, operand, REGCLASS_XMM, + MODRM_MOD(modrm(u)) == 3 ? + Mx_reg_size(size) : Mx_mem_size(size)); + break; + case OP_S: + decode_modrm_reg(u, operand, REGCLASS_SEG, size); + break; + case OP_O: + decode_moffset(u, size, operand); + break; + case OP_R0: + case OP_R1: + case OP_R2: + case OP_R3: + case OP_R4: + case OP_R5: + case OP_R6: + case OP_R7: + decode_reg(u, operand, REGCLASS_GPR, + (REX_B(u->_rex) << 3) | (type - OP_R0), size); + break; + case OP_AL: + case OP_AX: + case OP_eAX: + case OP_rAX: + decode_reg(u, operand, REGCLASS_GPR, 0, size); + break; + case OP_CL: + case OP_CX: + case OP_eCX: + decode_reg(u, operand, REGCLASS_GPR, 1, size); + break; + case OP_DL: + case OP_DX: + case OP_eDX: + decode_reg(u, operand, REGCLASS_GPR, 2, size); + break; + case OP_ES: + case OP_CS: + case OP_DS: + case OP_SS: + case OP_FS: + case OP_GS: + /* in 64bits mode, only fs and gs are allowed */ + if (u->dis_mode == 64) { + if (type != OP_FS && type != OP_GS) { + UDERR(u, "invalid segment register in 64bits\n"); + } + } + operand->type = UD_OP_REG; + operand->base = (type - OP_ES) + UD_R_ES; + operand->size = 16; + break; + case OP_J : + decode_imm(u, size, operand); + operand->type = UD_OP_JIMM; + break ; + case OP_R : + if (MODRM_MOD(modrm(u)) != 3) { + UDERR(u, "expected modrm.mod == 3\n"); + } + decode_modrm_rm(u, operand, REGCLASS_GPR, size); + break; + case OP_C: + decode_modrm_reg(u, operand, REGCLASS_CR, size); + break; + case OP_D: + decode_modrm_reg(u, operand, REGCLASS_DB, size); + break; + case OP_I3 : + operand->type = UD_OP_CONST; + operand->lval.sbyte = 3; + break; + case OP_ST0: + case OP_ST1: + case OP_ST2: + case OP_ST3: + case OP_ST4: + case OP_ST5: + case OP_ST6: + case OP_ST7: + operand->type = UD_OP_REG; + operand->base = (type - OP_ST0) + UD_R_ST0; + operand->size = 80; + break; + case OP_L: + decode_vex_immreg(u, operand, size); + break; + default : + operand->type = UD_NONE; + break; + } + return operand->type; +} + + +/* + * decode_operands + * + * Disassemble upto 3 operands of the current instruction being + * disassembled. By the end of the function, the operand fields + * of the ud structure will have been filled. + */ +static int +decode_operands(struct ud* u) +{ + decode_operand(u, &u->operand[0], + u->itab_entry->operand1.type, + u->itab_entry->operand1.size); + if (u->operand[0].type != UD_NONE) { + decode_operand(u, &u->operand[1], + u->itab_entry->operand2.type, + u->itab_entry->operand2.size); + } + if (u->operand[1].type != UD_NONE) { + decode_operand(u, &u->operand[2], + u->itab_entry->operand3.type, + u->itab_entry->operand3.size); + } + if (u->operand[2].type != UD_NONE) { + decode_operand(u, &u->operand[3], + u->itab_entry->operand4.type, + u->itab_entry->operand4.size); + } + return 0; +} + +/* ----------------------------------------------------------------------------- + * clear_insn() - clear instruction structure + * ----------------------------------------------------------------------------- + */ +static void +clear_insn(register struct ud* u) +{ + u->error = 0; + u->pfx_seg = 0; + u->pfx_opr = 0; + u->pfx_adr = 0; + u->pfx_lock = 0; + u->pfx_repne = 0; + u->pfx_rep = 0; + u->pfx_repe = 0; + u->pfx_rex = 0; + u->pfx_str = 0; + u->mnemonic = UD_Inone; + u->itab_entry = NULL; + u->have_modrm = 0; + u->br_far = 0; + u->vex_op = 0; + u->_rex = 0; + u->operand[0].type = UD_NONE; + u->operand[1].type = UD_NONE; + u->operand[2].type = UD_NONE; + u->operand[3].type = UD_NONE; +} + + +static UD_INLINE int +resolve_pfx_str(struct ud* u) +{ + if (u->pfx_str == 0xf3) { + if (P_STR(u->itab_entry->prefix)) { + u->pfx_rep = 0xf3; + } else { + u->pfx_repe = 0xf3; + } + } else if (u->pfx_str == 0xf2) { + u->pfx_repne = 0xf3; + } + return 0; +} + + +static int +resolve_mode( struct ud* u ) +{ + int default64; + /* if in error state, bail out */ + if ( u->error ) return -1; + + /* propagate prefix effects */ + if ( u->dis_mode == 64 ) { /* set 64bit-mode flags */ + + /* Check validity of instruction m64 */ + if ( P_INV64( u->itab_entry->prefix ) ) { + UDERR(u, "instruction invalid in 64bits\n"); + return -1; + } + + /* compute effective rex based on, + * - vex prefix (if any) + * - rex prefix (if any, and not vex) + * - allowed prefixes specified by the opcode map + */ + if (u->vex_op == 0xc4) { + /* vex has rex.rxb in 1's complement */ + u->_rex = ((~(u->vex_b1 >> 5) & 0x7) /* rex.0rxb */ | + ((u->vex_b2 >> 4) & 0x8) /* rex.w000 */); + } else if (u->vex_op == 0xc5) { + /* vex has rex.r in 1's complement */ + u->_rex = (~(u->vex_b1 >> 5)) & 4; + } else { + UD_ASSERT(u->vex_op == 0); + u->_rex = u->pfx_rex; + } + u->_rex &= REX_PFX_MASK(u->itab_entry->prefix); + + /* whether this instruction has a default operand size of + * 64bit, also hardcoded into the opcode map. + */ + default64 = P_DEF64( u->itab_entry->prefix ); + /* calculate effective operand size */ + if (REX_W(u->_rex)) { + u->opr_mode = 64; + } else if ( u->pfx_opr ) { + u->opr_mode = 16; + } else { + /* unless the default opr size of instruction is 64, + * the effective operand size in the absence of rex.w + * prefix is 32. + */ + u->opr_mode = default64 ? 64 : 32; + } + + /* calculate effective address size */ + u->adr_mode = (u->pfx_adr) ? 32 : 64; + } else if ( u->dis_mode == 32 ) { /* set 32bit-mode flags */ + u->opr_mode = ( u->pfx_opr ) ? 16 : 32; + u->adr_mode = ( u->pfx_adr ) ? 16 : 32; + } else if ( u->dis_mode == 16 ) { /* set 16bit-mode flags */ + u->opr_mode = ( u->pfx_opr ) ? 32 : 16; + u->adr_mode = ( u->pfx_adr ) ? 32 : 16; + } + + return 0; +} + + +static UD_INLINE int +decode_insn(struct ud *u, uint16_t ptr) +{ + UD_ASSERT((ptr & 0x8000) == 0); + u->itab_entry = &ud_itab[ ptr ]; + u->mnemonic = u->itab_entry->mnemonic; + return (resolve_pfx_str(u) == 0 && + resolve_mode(u) == 0 && + decode_operands(u) == 0 && + resolve_mnemonic(u) == 0) ? 0 : -1; +} + + +/* + * decode_3dnow() + * + * Decoding 3dnow is a little tricky because of its strange opcode + * structure. The final opcode disambiguation depends on the last + * byte that comes after the operands have been decoded. Fortunately, + * all 3dnow instructions have the same set of operand types. So we + * go ahead and decode the instruction by picking an arbitrarily chosen + * valid entry in the table, decode the operands, and read the final + * byte to resolve the menmonic. + */ +static UD_INLINE int +decode_3dnow(struct ud* u) +{ + uint16_t ptr; + UD_ASSERT(u->le->type == UD_TAB__OPC_3DNOW); + UD_ASSERT(u->le->table[0xc] != 0); + decode_insn(u, u->le->table[0xc]); + inp_next(u); + if (u->error) { + return -1; + } + ptr = u->le->table[inp_curr(u)]; + UD_ASSERT((ptr & 0x8000) == 0); + u->mnemonic = ud_itab[ptr].mnemonic; + return 0; +} + + +static int +decode_ssepfx(struct ud *u) +{ + uint8_t idx; + uint8_t pfx; + + /* + * String prefixes (f2, f3) take precedence over operand + * size prefix (66). + */ + pfx = u->pfx_str; + if (pfx == 0) { + pfx = u->pfx_opr; + } + idx = ((pfx & 0xf) + 1) / 2; + if (u->le->table[idx] == 0) { + idx = 0; + } + if (idx && u->le->table[idx] != 0) { + /* + * "Consume" the prefix as a part of the opcode, so it is no + * longer exported as an instruction prefix. + */ + u->pfx_str = 0; + if (pfx == 0x66) { + /* + * consume "66" only if it was used for decoding, leaving + * it to be used as an operands size override for some + * simd instructions. + */ + u->pfx_opr = 0; + } + } + return decode_ext(u, u->le->table[idx]); +} + + +static int +decode_vex(struct ud *u) +{ + uint8_t index; + if (u->dis_mode != 64 && MODRM_MOD(inp_peek(u)) != 0x3) { + index = 0; + } else { + u->vex_op = inp_curr(u); + u->vex_b1 = inp_next(u); + if (u->vex_op == 0xc4) { + uint8_t pp, m; + /* 3-byte vex */ + u->vex_b2 = inp_next(u); + UD_RETURN_ON_ERROR(u); + m = u->vex_b1 & 0x1f; + if (m == 0 || m > 3) { + UD_RETURN_WITH_ERROR(u, "reserved vex.m-mmmm value"); + } + pp = u->vex_b2 & 0x3; + index = (pp << 2) | m; + } else { + /* 2-byte vex */ + UD_ASSERT(u->vex_op == 0xc5); + index = 0x1 | ((u->vex_b1 & 0x3) << 2); + } + } + return decode_ext(u, u->le->table[index]); +} + + +/* + * decode_ext() + * + * Decode opcode extensions (if any) + */ +static int +decode_ext(struct ud *u, uint16_t ptr) +{ + uint8_t idx = 0; + if ((ptr & 0x8000) == 0) { + return decode_insn(u, ptr); + } + u->le = &ud_lookup_table_list[(~0x8000 & ptr)]; + if (u->le->type == UD_TAB__OPC_3DNOW) { + return decode_3dnow(u); + } + + switch (u->le->type) { + case UD_TAB__OPC_MOD: + /* !11 = 0, 11 = 1 */ + idx = (MODRM_MOD(modrm(u)) + 1) / 4; + break; + /* disassembly mode/operand size/address size based tables. + * 16 = 0,, 32 = 1, 64 = 2 + */ + case UD_TAB__OPC_MODE: + idx = u->dis_mode != 64 ? 0 : 1; + break; + case UD_TAB__OPC_OSIZE: + idx = eff_opr_mode(u->dis_mode, REX_W(u->pfx_rex), u->pfx_opr) / 32; + break; + case UD_TAB__OPC_ASIZE: + idx = eff_adr_mode(u->dis_mode, u->pfx_adr) / 32; + break; + case UD_TAB__OPC_X87: + idx = modrm(u) - 0xC0; + break; + case UD_TAB__OPC_VENDOR: + if (u->vendor == UD_VENDOR_ANY) { + /* choose a valid entry */ + idx = (u->le->table[idx] != 0) ? 0 : 1; + } else if (u->vendor == UD_VENDOR_AMD) { + idx = 0; + } else { + idx = 1; + } + break; + case UD_TAB__OPC_RM: + idx = MODRM_RM(modrm(u)); + break; + case UD_TAB__OPC_REG: + idx = MODRM_REG(modrm(u)); + break; + case UD_TAB__OPC_SSE: + return decode_ssepfx(u); + case UD_TAB__OPC_VEX: + return decode_vex(u); + case UD_TAB__OPC_VEX_W: + idx = vex_w(u); + break; + case UD_TAB__OPC_VEX_L: + idx = vex_l(u); + break; + case UD_TAB__OPC_TABLE: + inp_next(u); + return decode_opcode(u); + default: + UD_ASSERT(!"not reached"); + break; + } + + return decode_ext(u, u->le->table[idx]); +} + + +static int +decode_opcode(struct ud *u) +{ + uint16_t ptr; + UD_ASSERT(u->le->type == UD_TAB__OPC_TABLE); + UD_RETURN_ON_ERROR(u); + ptr = u->le->table[inp_curr(u)]; + return decode_ext(u, ptr); +} + + +/* ============================================================================= + * ud_decode() - Instruction decoder. Returns the number of bytes decoded. + * ============================================================================= + */ +unsigned int +ud_decode(struct ud *u) +{ + inp_start(u); + clear_insn(u); + u->le = &ud_lookup_table_list[0]; + u->error = decode_prefixes(u) == -1 || + decode_opcode(u) == -1 || + u->error; + /* Handle decode error. */ + if (u->error) { + /* clear out the decode data. */ + clear_insn(u); + /* mark the sequence of bytes as invalid. */ + u->itab_entry = &ud_itab[0]; /* entry 0 is invalid */ + u->mnemonic = u->itab_entry->mnemonic; + } + + /* maybe this stray segment override byte + * should be spewed out? + */ + if ( !P_SEG( u->itab_entry->prefix ) && + u->operand[0].type != UD_OP_MEM && + u->operand[1].type != UD_OP_MEM ) + u->pfx_seg = 0; + + u->insn_offset = u->pc; /* set offset of instruction */ + u->asm_buf_fill = 0; /* set translation buffer index to 0 */ + u->pc += u->inp_ctr; /* move program counter by bytes decoded */ + + /* return number of bytes disassembled. */ + return u->inp_ctr; +} + +/* +vim: set ts=2 sw=2 expandtab +*/ |