summaryrefslogtreecommitdiffhomepage
path: root/src/3p/monocypher/monocypher.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/3p/monocypher/monocypher.c')
-rw-r--r--src/3p/monocypher/monocypher.c2958
1 files changed, 2958 insertions, 0 deletions
diff --git a/src/3p/monocypher/monocypher.c b/src/3p/monocypher/monocypher.c
new file mode 100644
index 0000000..bd73306
--- /dev/null
+++ b/src/3p/monocypher/monocypher.c
@@ -0,0 +1,2958 @@
+// Monocypher version 3.1.3
+//
+// This file is dual-licensed. Choose whichever licence you want from
+// the two licences listed below.
+//
+// The first licence is a regular 2-clause BSD licence. The second licence
+// is the CC-0 from Creative Commons. It is intended to release Monocypher
+// to the public domain. The BSD licence serves as a fallback option.
+//
+// SPDX-License-Identifier: BSD-2-Clause OR CC0-1.0
+//
+// ------------------------------------------------------------------------
+//
+// Copyright (c) 2017-2020, Loup Vaillant
+// All rights reserved.
+//
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// 1. Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+//
+// 2. Redistributions in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the
+// distribution.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
+// ------------------------------------------------------------------------
+//
+// Written in 2017-2020 by Loup Vaillant
+//
+// To the extent possible under law, the author(s) have dedicated all copyright
+// and related neighboring rights to this software to the public domain
+// worldwide. This software is distributed without any warranty.
+//
+// You should have received a copy of the CC0 Public Domain Dedication along
+// with this software. If not, see
+// <https://creativecommons.org/publicdomain/zero/1.0/>
+
+#include "monocypher.h"
+
+#ifdef MONOCYPHER_CPP_NAMESPACE
+namespace MONOCYPHER_CPP_NAMESPACE {
+#endif
+
+/////////////////
+/// Utilities ///
+/////////////////
+#define FOR_T(type, i, start, end) for (type i = (start); i < (end); i++)
+#define FOR(i, start, end) FOR_T(size_t, i, start, end)
+#define COPY(dst, src, size) FOR(i__, 0, size) (dst)[i__] = (src)[i__]
+#define ZERO(buf, size) FOR(i__, 0, size) (buf)[i__] = 0
+#define WIPE_CTX(ctx) crypto_wipe(ctx , sizeof(*(ctx)))
+#define WIPE_BUFFER(buffer) crypto_wipe(buffer, sizeof(buffer))
+#define MIN(a, b) ((a) <= (b) ? (a) : (b))
+#define MAX(a, b) ((a) >= (b) ? (a) : (b))
+
+typedef int8_t i8;
+typedef uint8_t u8;
+typedef int16_t i16;
+typedef uint32_t u32;
+typedef int32_t i32;
+typedef int64_t i64;
+typedef uint64_t u64;
+
+static const u8 zero[128] = {0};
+
+// returns the smallest positive integer y such that
+// (x + y) % pow_2 == 0
+// Basically, it's how many bytes we need to add to "align" x.
+// Only works when pow_2 is a power of 2.
+// Note: we use ~x+1 instead of -x to avoid compiler warnings
+static size_t align(size_t x, size_t pow_2)
+{
+ return (~x + 1) & (pow_2 - 1);
+}
+
+static u32 load24_le(const u8 s[3])
+{
+ return (u32)s[0]
+ | ((u32)s[1] << 8)
+ | ((u32)s[2] << 16);
+}
+
+static u32 load32_le(const u8 s[4])
+{
+ return (u32)s[0]
+ | ((u32)s[1] << 8)
+ | ((u32)s[2] << 16)
+ | ((u32)s[3] << 24);
+}
+
+static u64 load64_le(const u8 s[8])
+{
+ return load32_le(s) | ((u64)load32_le(s+4) << 32);
+}
+
+static void store32_le(u8 out[4], u32 in)
+{
+ out[0] = in & 0xff;
+ out[1] = (in >> 8) & 0xff;
+ out[2] = (in >> 16) & 0xff;
+ out[3] = (in >> 24) & 0xff;
+}
+
+static void store64_le(u8 out[8], u64 in)
+{
+ store32_le(out , (u32)in );
+ store32_le(out + 4, in >> 32);
+}
+
+static void load32_le_buf (u32 *dst, const u8 *src, size_t size) {
+ FOR(i, 0, size) { dst[i] = load32_le(src + i*4); }
+}
+static void load64_le_buf (u64 *dst, const u8 *src, size_t size) {
+ FOR(i, 0, size) { dst[i] = load64_le(src + i*8); }
+}
+static void store32_le_buf(u8 *dst, const u32 *src, size_t size) {
+ FOR(i, 0, size) { store32_le(dst + i*4, src[i]); }
+}
+static void store64_le_buf(u8 *dst, const u64 *src, size_t size) {
+ FOR(i, 0, size) { store64_le(dst + i*8, src[i]); }
+}
+
+static u64 rotr64(u64 x, u64 n) { return (x >> n) ^ (x << (64 - n)); }
+static u32 rotl32(u32 x, u32 n) { return (x << n) ^ (x >> (32 - n)); }
+
+static int neq0(u64 diff)
+{ // constant time comparison to zero
+ // return diff != 0 ? -1 : 0
+ u64 half = (diff >> 32) | ((u32)diff);
+ return (1 & ((half - 1) >> 32)) - 1;
+}
+
+static u64 x16(const u8 a[16], const u8 b[16])
+{
+ return (load64_le(a + 0) ^ load64_le(b + 0))
+ | (load64_le(a + 8) ^ load64_le(b + 8));
+}
+static u64 x32(const u8 a[32],const u8 b[32]){return x16(a,b)| x16(a+16, b+16);}
+static u64 x64(const u8 a[64],const u8 b[64]){return x32(a,b)| x32(a+32, b+32);}
+int crypto_verify16(const u8 a[16], const u8 b[16]){ return neq0(x16(a, b)); }
+int crypto_verify32(const u8 a[32], const u8 b[32]){ return neq0(x32(a, b)); }
+int crypto_verify64(const u8 a[64], const u8 b[64]){ return neq0(x64(a, b)); }
+
+void crypto_wipe(void *secret, size_t size)
+{
+ volatile u8 *v_secret = (u8*)secret;
+ ZERO(v_secret, size);
+}
+
+/////////////////
+/// Chacha 20 ///
+/////////////////
+#define QUARTERROUND(a, b, c, d) \
+ a += b; d = rotl32(d ^ a, 16); \
+ c += d; b = rotl32(b ^ c, 12); \
+ a += b; d = rotl32(d ^ a, 8); \
+ c += d; b = rotl32(b ^ c, 7)
+
+static void chacha20_rounds(u32 out[16], const u32 in[16])
+{
+ // The temporary variables make Chacha20 10% faster.
+ u32 t0 = in[ 0]; u32 t1 = in[ 1]; u32 t2 = in[ 2]; u32 t3 = in[ 3];
+ u32 t4 = in[ 4]; u32 t5 = in[ 5]; u32 t6 = in[ 6]; u32 t7 = in[ 7];
+ u32 t8 = in[ 8]; u32 t9 = in[ 9]; u32 t10 = in[10]; u32 t11 = in[11];
+ u32 t12 = in[12]; u32 t13 = in[13]; u32 t14 = in[14]; u32 t15 = in[15];
+
+ FOR (i, 0, 10) { // 20 rounds, 2 rounds per loop.
+ QUARTERROUND(t0, t4, t8 , t12); // column 0
+ QUARTERROUND(t1, t5, t9 , t13); // column 1
+ QUARTERROUND(t2, t6, t10, t14); // column 2
+ QUARTERROUND(t3, t7, t11, t15); // column 3
+ QUARTERROUND(t0, t5, t10, t15); // diagonal 0
+ QUARTERROUND(t1, t6, t11, t12); // diagonal 1
+ QUARTERROUND(t2, t7, t8 , t13); // diagonal 2
+ QUARTERROUND(t3, t4, t9 , t14); // diagonal 3
+ }
+ out[ 0] = t0; out[ 1] = t1; out[ 2] = t2; out[ 3] = t3;
+ out[ 4] = t4; out[ 5] = t5; out[ 6] = t6; out[ 7] = t7;
+ out[ 8] = t8; out[ 9] = t9; out[10] = t10; out[11] = t11;
+ out[12] = t12; out[13] = t13; out[14] = t14; out[15] = t15;
+}
+
+const u8 *chacha20_constant = (const u8*)"expand 32-byte k"; // 16 bytes
+
+void crypto_hchacha20(u8 out[32], const u8 key[32], const u8 in [16])
+{
+ u32 block[16];
+ load32_le_buf(block , chacha20_constant, 4);
+ load32_le_buf(block + 4, key , 8);
+ load32_le_buf(block + 12, in , 4);
+
+ chacha20_rounds(block, block);
+
+ // prevent reversal of the rounds by revealing only half of the buffer.
+ store32_le_buf(out , block , 4); // constant
+ store32_le_buf(out+16, block+12, 4); // counter and nonce
+ WIPE_BUFFER(block);
+}
+
+u64 crypto_chacha20_ctr(u8 *cipher_text, const u8 *plain_text,
+ size_t text_size, const u8 key[32], const u8 nonce[8],
+ u64 ctr)
+{
+ u32 input[16];
+ load32_le_buf(input , chacha20_constant, 4);
+ load32_le_buf(input + 4, key , 8);
+ load32_le_buf(input + 14, nonce , 2);
+ input[12] = (u32) ctr;
+ input[13] = (u32)(ctr >> 32);
+
+ // Whole blocks
+ u32 pool[16];
+ size_t nb_blocks = text_size >> 6;
+ FOR (i, 0, nb_blocks) {
+ chacha20_rounds(pool, input);
+ if (plain_text != 0) {
+ FOR (j, 0, 16) {
+ u32 p = pool[j] + input[j];
+ store32_le(cipher_text, p ^ load32_le(plain_text));
+ cipher_text += 4;
+ plain_text += 4;
+ }
+ } else {
+ FOR (j, 0, 16) {
+ u32 p = pool[j] + input[j];
+ store32_le(cipher_text, p);
+ cipher_text += 4;
+ }
+ }
+ input[12]++;
+ if (input[12] == 0) {
+ input[13]++;
+ }
+ }
+ text_size &= 63;
+
+ // Last (incomplete) block
+ if (text_size > 0) {
+ if (plain_text == 0) {
+ plain_text = zero;
+ }
+ chacha20_rounds(pool, input);
+ u8 tmp[64];
+ FOR (i, 0, 16) {
+ store32_le(tmp + i*4, pool[i] + input[i]);
+ }
+ FOR (i, 0, text_size) {
+ cipher_text[i] = tmp[i] ^ plain_text[i];
+ }
+ WIPE_BUFFER(tmp);
+ }
+ ctr = input[12] + ((u64)input[13] << 32) + (text_size > 0);
+
+ WIPE_BUFFER(pool);
+ WIPE_BUFFER(input);
+ return ctr;
+}
+
+u32 crypto_ietf_chacha20_ctr(u8 *cipher_text, const u8 *plain_text,
+ size_t text_size,
+ const u8 key[32], const u8 nonce[12], u32 ctr)
+{
+ u64 big_ctr = ctr + ((u64)load32_le(nonce) << 32);
+ return (u32)crypto_chacha20_ctr(cipher_text, plain_text, text_size,
+ key, nonce + 4, big_ctr);
+}
+
+u64 crypto_xchacha20_ctr(u8 *cipher_text, const u8 *plain_text,
+ size_t text_size,
+ const u8 key[32], const u8 nonce[24], u64 ctr)
+{
+ u8 sub_key[32];
+ crypto_hchacha20(sub_key, key, nonce);
+ ctr = crypto_chacha20_ctr(cipher_text, plain_text, text_size,
+ sub_key, nonce+16, ctr);
+ WIPE_BUFFER(sub_key);
+ return ctr;
+}
+
+void crypto_chacha20(u8 *cipher_text, const u8 *plain_text, size_t text_size,
+ const u8 key[32], const u8 nonce[8])
+{
+ crypto_chacha20_ctr(cipher_text, plain_text, text_size, key, nonce, 0);
+
+}
+void crypto_ietf_chacha20(u8 *cipher_text, const u8 *plain_text,
+ size_t text_size,
+ const u8 key[32], const u8 nonce[12])
+{
+ crypto_ietf_chacha20_ctr(cipher_text, plain_text, text_size, key, nonce, 0);
+}
+
+void crypto_xchacha20(u8 *cipher_text, const u8 *plain_text, size_t text_size,
+ const u8 key[32], const u8 nonce[24])
+{
+ crypto_xchacha20_ctr(cipher_text, plain_text, text_size, key, nonce, 0);
+}
+
+/////////////////
+/// Poly 1305 ///
+/////////////////
+
+// h = (h + c) * r
+// preconditions:
+// ctx->h <= 4_ffffffff_ffffffff_ffffffff_ffffffff
+// ctx->r <= 0ffffffc_0ffffffc_0ffffffc_0fffffff
+// end <= 1
+// Postcondition:
+// ctx->h <= 4_ffffffff_ffffffff_ffffffff_ffffffff
+static void poly_block(crypto_poly1305_ctx *ctx, const u8 in[16], unsigned end)
+{
+ u32 s[4];
+ load32_le_buf(s, in, 4);
+
+ // s = h + c, without carry propagation
+ const u64 s0 = ctx->h[0] + (u64)s[0]; // s0 <= 1_fffffffe
+ const u64 s1 = ctx->h[1] + (u64)s[1]; // s1 <= 1_fffffffe
+ const u64 s2 = ctx->h[2] + (u64)s[2]; // s2 <= 1_fffffffe
+ const u64 s3 = ctx->h[3] + (u64)s[3]; // s3 <= 1_fffffffe
+ const u32 s4 = ctx->h[4] + end; // s4 <= 5
+
+ // Local all the things!
+ const u32 r0 = ctx->r[0]; // r0 <= 0fffffff
+ const u32 r1 = ctx->r[1]; // r1 <= 0ffffffc
+ const u32 r2 = ctx->r[2]; // r2 <= 0ffffffc
+ const u32 r3 = ctx->r[3]; // r3 <= 0ffffffc
+ const u32 rr0 = (r0 >> 2) * 5; // rr0 <= 13fffffb // lose 2 bits...
+ const u32 rr1 = (r1 >> 2) + r1; // rr1 <= 13fffffb // rr1 == (r1 >> 2) * 5
+ const u32 rr2 = (r2 >> 2) + r2; // rr2 <= 13fffffb // rr1 == (r2 >> 2) * 5
+ const u32 rr3 = (r3 >> 2) + r3; // rr3 <= 13fffffb // rr1 == (r3 >> 2) * 5
+
+ // (h + c) * r, without carry propagation
+ const u64 x0 = s0*r0+ s1*rr3+ s2*rr2+ s3*rr1+ s4*rr0; // <= 97ffffe007fffff8
+ const u64 x1 = s0*r1+ s1*r0 + s2*rr3+ s3*rr2+ s4*rr1; // <= 8fffffe20ffffff6
+ const u64 x2 = s0*r2+ s1*r1 + s2*r0 + s3*rr3+ s4*rr2; // <= 87ffffe417fffff4
+ const u64 x3 = s0*r3+ s1*r2 + s2*r1 + s3*r0 + s4*rr3; // <= 7fffffe61ffffff2
+ const u32 x4 = s4 * (r0 & 3); // ...recover 2 bits // <= f
+
+ // partial reduction modulo 2^130 - 5
+ const u32 u5 = x4 + (x3 >> 32); // u5 <= 7ffffff5
+ const u64 u0 = (u5 >> 2) * 5 + (x0 & 0xffffffff);
+ const u64 u1 = (u0 >> 32) + (x1 & 0xffffffff) + (x0 >> 32);
+ const u64 u2 = (u1 >> 32) + (x2 & 0xffffffff) + (x1 >> 32);
+ const u64 u3 = (u2 >> 32) + (x3 & 0xffffffff) + (x2 >> 32);
+ const u64 u4 = (u3 >> 32) + (u5 & 3);
+
+ // Update the hash
+ ctx->h[0] = (u32)u0; // u0 <= 1_9ffffff0
+ ctx->h[1] = (u32)u1; // u1 <= 1_97ffffe0
+ ctx->h[2] = (u32)u2; // u2 <= 1_8fffffe2
+ ctx->h[3] = (u32)u3; // u3 <= 1_87ffffe4
+ ctx->h[4] = (u32)u4; // u4 <= 4
+}
+
+void crypto_poly1305_init(crypto_poly1305_ctx *ctx, const u8 key[32])
+{
+ ZERO(ctx->h, 5); // Initial hash is zero
+ ctx->c_idx = 0;
+ // load r and pad (r has some of its bits cleared)
+ load32_le_buf(ctx->r , key , 4);
+ load32_le_buf(ctx->pad, key+16, 4);
+ FOR (i, 0, 1) { ctx->r[i] &= 0x0fffffff; }
+ FOR (i, 1, 4) { ctx->r[i] &= 0x0ffffffc; }
+}
+
+void crypto_poly1305_update(crypto_poly1305_ctx *ctx,
+ const u8 *message, size_t message_size)
+{
+ // Align ourselves with block boundaries
+ size_t aligned = MIN(align(ctx->c_idx, 16), message_size);
+ FOR (i, 0, aligned) {
+ ctx->c[ctx->c_idx] = *message;
+ ctx->c_idx++;
+ message++;
+ message_size--;
+ }
+
+ // If block is complete, process it
+ if (ctx->c_idx == 16) {
+ poly_block(ctx, ctx->c, 1);
+ ctx->c_idx = 0;
+ }
+
+ // Process the message block by block
+ size_t nb_blocks = message_size >> 4;
+ FOR (i, 0, nb_blocks) {
+ poly_block(ctx, message, 1);
+ message += 16;
+ }
+ message_size &= 15;
+
+ // remaining bytes (we never complete a block here)
+ FOR (i, 0, message_size) {
+ ctx->c[ctx->c_idx] = message[i];
+ ctx->c_idx++;
+ }
+}
+
+void crypto_poly1305_final(crypto_poly1305_ctx *ctx, u8 mac[16])
+{
+ // Process the last block (if any)
+ // We move the final 1 according to remaining input length
+ // (this will add less than 2^130 to the last input block)
+ if (ctx->c_idx != 0) {
+ ZERO(ctx->c + ctx->c_idx, 16 - ctx->c_idx);
+ ctx->c[ctx->c_idx] = 1;
+ poly_block(ctx, ctx->c, 0);
+ }
+
+ // check if we should subtract 2^130-5 by performing the
+ // corresponding carry propagation.
+ u64 c = 5;
+ FOR (i, 0, 4) {
+ c += ctx->h[i];
+ c >>= 32;
+ }
+ c += ctx->h[4];
+ c = (c >> 2) * 5; // shift the carry back to the beginning
+ // c now indicates how many times we should subtract 2^130-5 (0 or 1)
+ FOR (i, 0, 4) {
+ c += (u64)ctx->h[i] + ctx->pad[i];
+ store32_le(mac + i*4, (u32)c);
+ c = c >> 32;
+ }
+ WIPE_CTX(ctx);
+}
+
+void crypto_poly1305(u8 mac[16], const u8 *message,
+ size_t message_size, const u8 key[32])
+{
+ crypto_poly1305_ctx ctx;
+ crypto_poly1305_init (&ctx, key);
+ crypto_poly1305_update(&ctx, message, message_size);
+ crypto_poly1305_final (&ctx, mac);
+}
+
+////////////////
+/// BLAKE2 b ///
+////////////////
+static const u64 iv[8] = {
+ 0x6a09e667f3bcc908, 0xbb67ae8584caa73b,
+ 0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1,
+ 0x510e527fade682d1, 0x9b05688c2b3e6c1f,
+ 0x1f83d9abfb41bd6b, 0x5be0cd19137e2179,
+};
+
+static void blake2b_compress(crypto_blake2b_ctx *ctx, int is_last_block)
+{
+ static const u8 sigma[12][16] = {
+ { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
+ { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
+ { 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
+ { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
+ { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
+ { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },
+ { 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
+ { 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 },
+ { 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 },
+ { 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 },
+ { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
+ { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
+ };
+
+ // increment input offset
+ u64 *x = ctx->input_offset;
+ size_t y = ctx->input_idx;
+ x[0] += y;
+ if (x[0] < y) {
+ x[1]++;
+ }
+
+ // init work vector
+ u64 v0 = ctx->hash[0]; u64 v8 = iv[0];
+ u64 v1 = ctx->hash[1]; u64 v9 = iv[1];
+ u64 v2 = ctx->hash[2]; u64 v10 = iv[2];
+ u64 v3 = ctx->hash[3]; u64 v11 = iv[3];
+ u64 v4 = ctx->hash[4]; u64 v12 = iv[4] ^ ctx->input_offset[0];
+ u64 v5 = ctx->hash[5]; u64 v13 = iv[5] ^ ctx->input_offset[1];
+ u64 v6 = ctx->hash[6]; u64 v14 = iv[6] ^ (u64)~(is_last_block - 1);
+ u64 v7 = ctx->hash[7]; u64 v15 = iv[7];
+
+ // mangle work vector
+ u64 *input = ctx->input;
+#define BLAKE2_G(a, b, c, d, x, y) \
+ a += b + x; d = rotr64(d ^ a, 32); \
+ c += d; b = rotr64(b ^ c, 24); \
+ a += b + y; d = rotr64(d ^ a, 16); \
+ c += d; b = rotr64(b ^ c, 63)
+#define BLAKE2_ROUND(i) \
+ BLAKE2_G(v0, v4, v8 , v12, input[sigma[i][ 0]], input[sigma[i][ 1]]); \
+ BLAKE2_G(v1, v5, v9 , v13, input[sigma[i][ 2]], input[sigma[i][ 3]]); \
+ BLAKE2_G(v2, v6, v10, v14, input[sigma[i][ 4]], input[sigma[i][ 5]]); \
+ BLAKE2_G(v3, v7, v11, v15, input[sigma[i][ 6]], input[sigma[i][ 7]]); \
+ BLAKE2_G(v0, v5, v10, v15, input[sigma[i][ 8]], input[sigma[i][ 9]]); \
+ BLAKE2_G(v1, v6, v11, v12, input[sigma[i][10]], input[sigma[i][11]]); \
+ BLAKE2_G(v2, v7, v8 , v13, input[sigma[i][12]], input[sigma[i][13]]); \
+ BLAKE2_G(v3, v4, v9 , v14, input[sigma[i][14]], input[sigma[i][15]])
+
+#ifdef BLAKE2_NO_UNROLLING
+ FOR (i, 0, 12) {
+ BLAKE2_ROUND(i);
+ }
+#else
+ BLAKE2_ROUND(0); BLAKE2_ROUND(1); BLAKE2_ROUND(2); BLAKE2_ROUND(3);
+ BLAKE2_ROUND(4); BLAKE2_ROUND(5); BLAKE2_ROUND(6); BLAKE2_ROUND(7);
+ BLAKE2_ROUND(8); BLAKE2_ROUND(9); BLAKE2_ROUND(10); BLAKE2_ROUND(11);
+#endif
+
+ // update hash
+ ctx->hash[0] ^= v0 ^ v8; ctx->hash[1] ^= v1 ^ v9;
+ ctx->hash[2] ^= v2 ^ v10; ctx->hash[3] ^= v3 ^ v11;
+ ctx->hash[4] ^= v4 ^ v12; ctx->hash[5] ^= v5 ^ v13;
+ ctx->hash[6] ^= v6 ^ v14; ctx->hash[7] ^= v7 ^ v15;
+}
+
+static void blake2b_set_input(crypto_blake2b_ctx *ctx, u8 input, size_t index)
+{
+ if (index == 0) {
+ ZERO(ctx->input, 16);
+ }
+ size_t word = index >> 3;
+ size_t byte = index & 7;
+ ctx->input[word] |= (u64)input << (byte << 3);
+}
+
+void crypto_blake2b_general_init(crypto_blake2b_ctx *ctx, size_t hash_size,
+ const u8 *key, size_t key_size)
+{
+ // initial hash
+ COPY(ctx->hash, iv, 8);
+ ctx->hash[0] ^= 0x01010000 ^ (key_size << 8) ^ hash_size;
+
+ ctx->input_offset[0] = 0; // beginning of the input, no offset
+ ctx->input_offset[1] = 0; // beginning of the input, no offset
+ ctx->hash_size = hash_size; // remember the hash size we want
+ ctx->input_idx = 0;
+
+ // if there is a key, the first block is that key (padded with zeroes)
+ if (key_size > 0) {
+ u8 key_block[128] = {0};
+ COPY(key_block, key, key_size);
+ // same as calling crypto_blake2b_update(ctx, key_block , 128)
+ load64_le_buf(ctx->input, key_block, 16);
+ ctx->input_idx = 128;
+ }
+}
+
+void crypto_blake2b_init(crypto_blake2b_ctx *ctx)
+{
+ crypto_blake2b_general_init(ctx, 64, 0, 0);
+}
+
+void crypto_blake2b_update(crypto_blake2b_ctx *ctx,
+ const u8 *message, size_t message_size)
+{
+ // Align ourselves with block boundaries
+ // The block that may result is not compressed yet
+ size_t aligned = MIN(align(ctx->input_idx, 128), message_size);
+ FOR (i, 0, aligned) {
+ blake2b_set_input(ctx, *message, ctx->input_idx);
+ ctx->input_idx++;
+ message++;
+ message_size--;
+ }
+
+ // Process the message block by block
+ // The last block is not compressed yet.
+ size_t nb_blocks = message_size >> 7;
+ FOR (i, 0, nb_blocks) {
+ if (ctx->input_idx == 128) {
+ blake2b_compress(ctx, 0);
+ }
+ load64_le_buf(ctx->input, message, 16);
+ message += 128;
+ ctx->input_idx = 128;
+ }
+ message_size &= 127;
+
+ // Fill remaining bytes (not the whole buffer)
+ // The last block is never fully filled
+ FOR (i, 0, message_size) {
+ if (ctx->input_idx == 128) {
+ blake2b_compress(ctx, 0);
+ ctx->input_idx = 0;
+ }
+ blake2b_set_input(ctx, message[i], ctx->input_idx);
+ ctx->input_idx++;
+ }
+}
+
+void crypto_blake2b_final(crypto_blake2b_ctx *ctx, u8 *hash)
+{
+ // Pad the end of the block with zeroes
+ FOR (i, ctx->input_idx, 128) {
+ blake2b_set_input(ctx, 0, i);
+ }
+ blake2b_compress(ctx, 1); // compress the last block
+ size_t nb_words = ctx->hash_size >> 3;
+ store64_le_buf(hash, ctx->hash, nb_words);
+ FOR (i, nb_words << 3, ctx->hash_size) {
+ hash[i] = (ctx->hash[i >> 3] >> (8 * (i & 7))) & 0xff;
+ }
+ WIPE_CTX(ctx);
+}
+
+void crypto_blake2b_general(u8 *hash , size_t hash_size,
+ const u8 *key , size_t key_size,
+ const u8 *message, size_t message_size)
+{
+ crypto_blake2b_ctx ctx;
+ crypto_blake2b_general_init(&ctx, hash_size, key, key_size);
+ crypto_blake2b_update(&ctx, message, message_size);
+ crypto_blake2b_final(&ctx, hash);
+}
+
+void crypto_blake2b(u8 hash[64], const u8 *message, size_t message_size)
+{
+ crypto_blake2b_general(hash, 64, 0, 0, message, message_size);
+}
+
+static void blake2b_vtable_init(void *ctx) {
+ crypto_blake2b_init(&((crypto_sign_ctx*)ctx)->hash);
+}
+static void blake2b_vtable_update(void *ctx, const u8 *m, size_t s) {
+ crypto_blake2b_update(&((crypto_sign_ctx*)ctx)->hash, m, s);
+}
+static void blake2b_vtable_final(void *ctx, u8 *h) {
+ crypto_blake2b_final(&((crypto_sign_ctx*)ctx)->hash, h);
+}
+const crypto_sign_vtable crypto_blake2b_vtable = {
+ crypto_blake2b,
+ blake2b_vtable_init,
+ blake2b_vtable_update,
+ blake2b_vtable_final,
+ sizeof(crypto_sign_ctx),
+};
+
+////////////////
+/// Argon2 i ///
+////////////////
+// references to R, Z, Q etc. come from the spec
+
+// Argon2 operates on 1024 byte blocks.
+typedef struct { u64 a[128]; } block;
+
+static void wipe_block(block *b)
+{
+ volatile u64* a = b->a;
+ ZERO(a, 128);
+}
+
+// updates a BLAKE2 hash with a 32 bit word, little endian.
+static void blake_update_32(crypto_blake2b_ctx *ctx, u32 input)
+{
+ u8 buf[4];
+ store32_le(buf, input);
+ crypto_blake2b_update(ctx, buf, 4);
+ WIPE_BUFFER(buf);
+}
+
+static void load_block(block *b, const u8 bytes[1024])
+{
+ load64_le_buf(b->a, bytes, 128);
+}
+
+static void store_block(u8 bytes[1024], const block *b)
+{
+ store64_le_buf(bytes, b->a, 128);
+}
+
+static void copy_block(block *o,const block*in){FOR(i,0,128)o->a[i] = in->a[i];}
+static void xor_block(block *o,const block*in){FOR(i,0,128)o->a[i]^= in->a[i];}
+
+// Hash with a virtually unlimited digest size.
+// Doesn't extract more entropy than the base hash function.
+// Mainly used for filling a whole kilobyte block with pseudo-random bytes.
+// (One could use a stream cipher with a seed hash as the key, but
+// this would introduce another dependency —and point of failure.)
+static void extended_hash(u8 *digest, u32 digest_size,
+ const u8 *input , u32 input_size)
+{
+ crypto_blake2b_ctx ctx;
+ crypto_blake2b_general_init(&ctx, MIN(digest_size, 64), 0, 0);
+ blake_update_32 (&ctx, digest_size);
+ crypto_blake2b_update (&ctx, input, input_size);
+ crypto_blake2b_final (&ctx, digest);
+
+ if (digest_size > 64) {
+ // the conversion to u64 avoids integer overflow on
+ // ludicrously big hash sizes.
+ u32 r = (u32)(((u64)digest_size + 31) >> 5) - 2;
+ u32 i = 1;
+ u32 in = 0;
+ u32 out = 32;
+ while (i < r) {
+ // Input and output overlap. This is intentional
+ crypto_blake2b(digest + out, digest + in, 64);
+ i += 1;
+ in += 32;
+ out += 32;
+ }
+ crypto_blake2b_general(digest + out, digest_size - (32 * r),
+ 0, 0, // no key
+ digest + in , 64);
+ }
+}
+
+#define LSB(x) ((x) & 0xffffffff)
+#define G(a, b, c, d) \
+ a += b + 2 * LSB(a) * LSB(b); d ^= a; d = rotr64(d, 32); \
+ c += d + 2 * LSB(c) * LSB(d); b ^= c; b = rotr64(b, 24); \
+ a += b + 2 * LSB(a) * LSB(b); d ^= a; d = rotr64(d, 16); \
+ c += d + 2 * LSB(c) * LSB(d); b ^= c; b = rotr64(b, 63)
+#define ROUND(v0, v1, v2, v3, v4, v5, v6, v7, \
+ v8, v9, v10, v11, v12, v13, v14, v15) \
+ G(v0, v4, v8, v12); G(v1, v5, v9, v13); \
+ G(v2, v6, v10, v14); G(v3, v7, v11, v15); \
+ G(v0, v5, v10, v15); G(v1, v6, v11, v12); \
+ G(v2, v7, v8, v13); G(v3, v4, v9, v14)
+
+// Core of the compression function G. Computes Z from R in place.
+static void g_rounds(block *work_block)
+{
+ // column rounds (work_block = Q)
+ for (int i = 0; i < 128; i += 16) {
+ ROUND(work_block->a[i ], work_block->a[i + 1],
+ work_block->a[i + 2], work_block->a[i + 3],
+ work_block->a[i + 4], work_block->a[i + 5],
+ work_block->a[i + 6], work_block->a[i + 7],
+ work_block->a[i + 8], work_block->a[i + 9],
+ work_block->a[i + 10], work_block->a[i + 11],
+ work_block->a[i + 12], work_block->a[i + 13],
+ work_block->a[i + 14], work_block->a[i + 15]);
+ }
+ // row rounds (work_block = Z)
+ for (int i = 0; i < 16; i += 2) {
+ ROUND(work_block->a[i ], work_block->a[i + 1],
+ work_block->a[i + 16], work_block->a[i + 17],
+ work_block->a[i + 32], work_block->a[i + 33],
+ work_block->a[i + 48], work_block->a[i + 49],
+ work_block->a[i + 64], work_block->a[i + 65],
+ work_block->a[i + 80], work_block->a[i + 81],
+ work_block->a[i + 96], work_block->a[i + 97],
+ work_block->a[i + 112], work_block->a[i + 113]);
+ }
+}
+
+// Argon2i uses a kind of stream cipher to determine which reference
+// block it will take to synthesise the next block. This context hold
+// that stream's state. (It's very similar to Chacha20. The block b
+// is analogous to Chacha's own pool)
+typedef struct {
+ block b;
+ u32 pass_number;
+ u32 slice_number;
+ u32 nb_blocks;
+ u32 nb_iterations;
+ u32 ctr;
+ u32 offset;
+} gidx_ctx;
+
+// The block in the context will determine array indices. To avoid
+// timing attacks, it only depends on public information. No looking
+// at a previous block to seed the next. This makes offline attacks
+// easier, but timing attacks are the bigger threat in many settings.
+static void gidx_refresh(gidx_ctx *ctx)
+{
+ // seed the beginning of the block...
+ ctx->b.a[0] = ctx->pass_number;
+ ctx->b.a[1] = 0; // lane number (we have only one)
+ ctx->b.a[2] = ctx->slice_number;
+ ctx->b.a[3] = ctx->nb_blocks;
+ ctx->b.a[4] = ctx->nb_iterations;
+ ctx->b.a[5] = 1; // type: Argon2i
+ ctx->b.a[6] = ctx->ctr;
+ ZERO(ctx->b.a + 7, 121); // ...then zero the rest out
+
+ // Shuffle the block thus: ctx->b = G((G(ctx->b, zero)), zero)
+ // (G "square" function), to get cheap pseudo-random numbers.
+ block tmp;
+ copy_block(&tmp, &ctx->b);
+ g_rounds (&ctx->b);
+ xor_block (&ctx->b, &tmp);
+ copy_block(&tmp, &ctx->b);
+ g_rounds (&ctx->b);
+ xor_block (&ctx->b, &tmp);
+ wipe_block(&tmp);
+}
+
+static void gidx_init(gidx_ctx *ctx,
+ u32 pass_number, u32 slice_number,
+ u32 nb_blocks, u32 nb_iterations)
+{
+ ctx->pass_number = pass_number;
+ ctx->slice_number = slice_number;
+ ctx->nb_blocks = nb_blocks;
+ ctx->nb_iterations = nb_iterations;
+ ctx->ctr = 0;
+
+ // Offset from the beginning of the segment. For the first slice
+ // of the first pass, we start at the *third* block, so the offset
+ // starts at 2, not 0.
+ if (pass_number != 0 || slice_number != 0) {
+ ctx->offset = 0;
+ } else {
+ ctx->offset = 2;
+ ctx->ctr++; // Compensates for missed lazy creation
+ gidx_refresh(ctx); // at the start of gidx_next()
+ }
+}
+
+static u32 gidx_next(gidx_ctx *ctx)
+{
+ // lazily creates the offset block we need
+ if ((ctx->offset & 127) == 0) {
+ ctx->ctr++;
+ gidx_refresh(ctx);
+ }
+ u32 index = ctx->offset & 127; // save index for current call
+ u32 offset = ctx->offset; // save offset for current call
+ ctx->offset++; // update offset for next call
+
+ // Computes the area size.
+ // Pass 0 : all already finished segments plus already constructed
+ // blocks in this segment
+ // Pass 1+: 3 last segments plus already constructed
+ // blocks in this segment. THE SPEC SUGGESTS OTHERWISE.
+ // I CONFORM TO THE REFERENCE IMPLEMENTATION.
+ int first_pass = ctx->pass_number == 0;
+ u32 slice_size = ctx->nb_blocks >> 2;
+ u32 nb_segments = first_pass ? ctx->slice_number : 3;
+ u32 area_size = nb_segments * slice_size + offset - 1;
+
+ // Computes the starting position of the reference area.
+ // CONTRARY TO WHAT THE SPEC SUGGESTS, IT STARTS AT THE
+ // NEXT SEGMENT, NOT THE NEXT BLOCK.
+ u32 next_slice = ((ctx->slice_number + 1) & 3) * slice_size;
+ u32 start_pos = first_pass ? 0 : next_slice;
+
+ // Generate offset from J1 (no need for J2, there's only one lane)
+ u64 j1 = ctx->b.a[index] & 0xffffffff; // pseudo-random number
+ u64 x = (j1 * j1) >> 32;
+ u64 y = (area_size * x) >> 32;
+ u64 z = (area_size - 1) - y;
+ u64 ref = start_pos + z; // ref < 2 * nb_blocks
+ return (u32)(ref < ctx->nb_blocks ? ref : ref - ctx->nb_blocks);
+}
+
+// Main algorithm
+void crypto_argon2i_general(u8 *hash, u32 hash_size,
+ void *work_area, u32 nb_blocks,
+ u32 nb_iterations,
+ const u8 *password, u32 password_size,
+ const u8 *salt, u32 salt_size,
+ const u8 *key, u32 key_size,
+ const u8 *ad, u32 ad_size)
+{
+ // work area seen as blocks (must be suitably aligned)
+ block *blocks = (block*)work_area;
+ {
+ crypto_blake2b_ctx ctx;
+ crypto_blake2b_init(&ctx);
+
+ blake_update_32 (&ctx, 1 ); // p: number of threads
+ blake_update_32 (&ctx, hash_size );
+ blake_update_32 (&ctx, nb_blocks );
+ blake_update_32 (&ctx, nb_iterations);
+ blake_update_32 (&ctx, 0x13 ); // v: version number
+ blake_update_32 (&ctx, 1 ); // y: Argon2i
+ blake_update_32 (&ctx, password_size);
+ crypto_blake2b_update(&ctx, password, password_size);
+ blake_update_32 (&ctx, salt_size);
+ crypto_blake2b_update(&ctx, salt, salt_size);
+ blake_update_32 (&ctx, key_size);
+ crypto_blake2b_update(&ctx, key, key_size);
+ blake_update_32 (&ctx, ad_size);
+ crypto_blake2b_update(&ctx, ad, ad_size);
+
+ u8 initial_hash[72]; // 64 bytes plus 2 words for future hashes
+ crypto_blake2b_final(&ctx, initial_hash);
+
+ // fill first 2 blocks
+ u8 hash_area[1024];
+ store32_le(initial_hash + 64, 0); // first additional word
+ store32_le(initial_hash + 68, 0); // second additional word
+ extended_hash(hash_area, 1024, initial_hash, 72);
+ load_block(blocks, hash_area);
+
+ store32_le(initial_hash + 64, 1); // slight modification
+ extended_hash(hash_area, 1024, initial_hash, 72);
+ load_block(blocks + 1, hash_area);
+
+ WIPE_BUFFER(initial_hash);
+ WIPE_BUFFER(hash_area);
+ }
+
+ // Actual number of blocks
+ nb_blocks -= nb_blocks & 3; // round down to 4 p (p == 1 thread)
+ const u32 segment_size = nb_blocks >> 2;
+
+ // fill (then re-fill) the rest of the blocks
+ block tmp;
+ gidx_ctx ctx; // public information, no need to wipe
+ FOR_T (u32, pass_number, 0, nb_iterations) {
+ int first_pass = pass_number == 0;
+
+ FOR_T (u32, segment, 0, 4) {
+ gidx_init(&ctx, pass_number, segment, nb_blocks, nb_iterations);
+
+ // On the first segment of the first pass,
+ // blocks 0 and 1 are already filled.
+ // We use the offset to skip them.
+ u32 start_offset = first_pass && segment == 0 ? 2 : 0;
+ u32 segment_start = segment * segment_size + start_offset;
+ u32 segment_end = (segment + 1) * segment_size;
+ FOR_T (u32, current_block, segment_start, segment_end) {
+ block *reference = blocks + gidx_next(&ctx);
+ block *current = blocks + current_block;
+ block *previous = current_block == 0
+ ? blocks + nb_blocks - 1
+ : blocks + current_block - 1;
+ // Apply compression function G,
+ // And copy it (or XOR it) to the current block.
+ copy_block(&tmp, previous);
+ xor_block (&tmp, reference);
+ if (first_pass) { copy_block(current, &tmp); }
+ else { xor_block (current, &tmp); }
+ g_rounds (&tmp);
+ xor_block (current, &tmp);
+ }
+ }
+ }
+ wipe_block(&tmp);
+ u8 final_block[1024];
+ store_block(final_block, blocks + (nb_blocks - 1));
+
+ // wipe work area
+ volatile u64 *p = (u64*)work_area;
+ ZERO(p, 128 * nb_blocks);
+
+ // hash the very last block with H' into the output hash
+ extended_hash(hash, hash_size, final_block, 1024);
+ WIPE_BUFFER(final_block);
+}
+
+void crypto_argon2i(u8 *hash, u32 hash_size,
+ void *work_area, u32 nb_blocks, u32 nb_iterations,
+ const u8 *password, u32 password_size,
+ const u8 *salt, u32 salt_size)
+{
+ crypto_argon2i_general(hash, hash_size, work_area, nb_blocks, nb_iterations,
+ password, password_size, salt , salt_size, 0,0,0,0);
+}
+
+////////////////////////////////////
+/// Arithmetic modulo 2^255 - 19 ///
+////////////////////////////////////
+// Originally taken from SUPERCOP's ref10 implementation.
+// A bit bigger than TweetNaCl, over 4 times faster.
+
+// field element
+typedef i32 fe[10];
+
+// field constants
+//
+// fe_one : 1
+// sqrtm1 : sqrt(-1)
+// d : -121665 / 121666
+// D2 : 2 * -121665 / 121666
+// lop_x, lop_y: low order point in Edwards coordinates
+// ufactor : -sqrt(-1) * 2
+// A2 : 486662^2 (A squared)
+static const fe fe_one = {1};
+static const fe sqrtm1 = {-32595792, -7943725, 9377950, 3500415, 12389472,
+ -272473, -25146209, -2005654, 326686, 11406482,};
+static const fe d = {-10913610, 13857413, -15372611, 6949391, 114729,
+ -8787816, -6275908, -3247719, -18696448, -12055116,};
+static const fe D2 = {-21827239, -5839606, -30745221, 13898782, 229458,
+ 15978800, -12551817, -6495438, 29715968, 9444199,};
+static const fe lop_x = {21352778, 5345713, 4660180, -8347857, 24143090,
+ 14568123, 30185756, -12247770, -33528939, 8345319,};
+static const fe lop_y = {-6952922, -1265500, 6862341, -7057498, -4037696,
+ -5447722, 31680899, -15325402, -19365852, 1569102,};
+static const fe ufactor = {-1917299, 15887451, -18755900, -7000830, -24778944,
+ 544946, -16816446, 4011309, -653372, 10741468,};
+static const fe A2 = {12721188, 3529, 0, 0, 0, 0, 0, 0, 0, 0,};
+
+static void fe_0(fe h) { ZERO(h , 10); }
+static void fe_1(fe h) { h[0] = 1; ZERO(h+1, 9); }
+
+static void fe_copy(fe h,const fe f ){FOR(i,0,10) h[i] = f[i]; }
+static void fe_neg (fe h,const fe f ){FOR(i,0,10) h[i] = -f[i]; }
+static void fe_add (fe h,const fe f,const fe g){FOR(i,0,10) h[i] = f[i] + g[i];}
+static void fe_sub (fe h,const fe f,const fe g){FOR(i,0,10) h[i] = f[i] - g[i];}
+
+static void fe_cswap(fe f, fe g, int b)
+{
+ i32 mask = -b; // -1 = 0xffffffff
+ FOR (i, 0, 10) {
+ i32 x = (f[i] ^ g[i]) & mask;
+ f[i] = f[i] ^ x;
+ g[i] = g[i] ^ x;
+ }
+}
+
+static void fe_ccopy(fe f, const fe g, int b)
+{
+ i32 mask = -b; // -1 = 0xffffffff
+ FOR (i, 0, 10) {
+ i32 x = (f[i] ^ g[i]) & mask;
+ f[i] = f[i] ^ x;
+ }
+}
+
+
+// Signed carry propagation
+// ------------------------
+//
+// Let t be a number. It can be uniquely decomposed thus:
+//
+// t = h*2^26 + l
+// such that -2^25 <= l < 2^25
+//
+// Let c = (t + 2^25) / 2^26 (rounded down)
+// c = (h*2^26 + l + 2^25) / 2^26 (rounded down)
+// c = h + (l + 2^25) / 2^26 (rounded down)
+// c = h (exactly)
+// Because 0 <= l + 2^25 < 2^26
+//
+// Let u = t - c*2^26
+// u = h*2^26 + l - h*2^26
+// u = l
+// Therefore, -2^25 <= u < 2^25
+//
+// Additionally, if |t| < x, then |h| < x/2^26 (rounded down)
+//
+// Notations:
+// - In C, 1<<25 means 2^25.
+// - In C, x>>25 means floor(x / (2^25)).
+// - All of the above applies with 25 & 24 as well as 26 & 25.
+//
+//
+// Note on negative right shifts
+// -----------------------------
+//
+// In C, x >> n, where x is a negative integer, is implementation
+// defined. In practice, all platforms do arithmetic shift, which is
+// equivalent to division by 2^26, rounded down. Some compilers, like
+// GCC, even guarantee it.
+//
+// If we ever stumble upon a platform that does not propagate the sign
+// bit (we won't), visible failures will show at the slightest test, and
+// the signed shifts can be replaced by the following:
+//
+// typedef struct { i64 x:39; } s25;
+// typedef struct { i64 x:38; } s26;
+// i64 shift25(i64 x) { s25 s; s.x = ((u64)x)>>25; return s.x; }
+// i64 shift26(i64 x) { s26 s; s.x = ((u64)x)>>26; return s.x; }
+//
+// Current compilers cannot optimise this, causing a 30% drop in
+// performance. Fairly expensive for something that never happens.
+//
+//
+// Precondition
+// ------------
+//
+// |t0| < 2^63
+// |t1|..|t9| < 2^62
+//
+// Algorithm
+// ---------
+// c = t0 + 2^25 / 2^26 -- |c| <= 2^36
+// t0 -= c * 2^26 -- |t0| <= 2^25
+// t1 += c -- |t1| <= 2^63
+//
+// c = t4 + 2^25 / 2^26 -- |c| <= 2^36
+// t4 -= c * 2^26 -- |t4| <= 2^25
+// t5 += c -- |t5| <= 2^63
+//
+// c = t1 + 2^24 / 2^25 -- |c| <= 2^38
+// t1 -= c * 2^25 -- |t1| <= 2^24
+// t2 += c -- |t2| <= 2^63
+//
+// c = t5 + 2^24 / 2^25 -- |c| <= 2^38
+// t5 -= c * 2^25 -- |t5| <= 2^24
+// t6 += c -- |t6| <= 2^63
+//
+// c = t2 + 2^25 / 2^26 -- |c| <= 2^37
+// t2 -= c * 2^26 -- |t2| <= 2^25 < 1.1 * 2^25 (final t2)
+// t3 += c -- |t3| <= 2^63
+//
+// c = t6 + 2^25 / 2^26 -- |c| <= 2^37
+// t6 -= c * 2^26 -- |t6| <= 2^25 < 1.1 * 2^25 (final t6)
+// t7 += c -- |t7| <= 2^63
+//
+// c = t3 + 2^24 / 2^25 -- |c| <= 2^38
+// t3 -= c * 2^25 -- |t3| <= 2^24 < 1.1 * 2^24 (final t3)
+// t4 += c -- |t4| <= 2^25 + 2^38 < 2^39
+//
+// c = t7 + 2^24 / 2^25 -- |c| <= 2^38
+// t7 -= c * 2^25 -- |t7| <= 2^24 < 1.1 * 2^24 (final t7)
+// t8 += c -- |t8| <= 2^63
+//
+// c = t4 + 2^25 / 2^26 -- |c| <= 2^13
+// t4 -= c * 2^26 -- |t4| <= 2^25 < 1.1 * 2^25 (final t4)
+// t5 += c -- |t5| <= 2^24 + 2^13 < 1.1 * 2^24 (final t5)
+//
+// c = t8 + 2^25 / 2^26 -- |c| <= 2^37
+// t8 -= c * 2^26 -- |t8| <= 2^25 < 1.1 * 2^25 (final t8)
+// t9 += c -- |t9| <= 2^63
+//
+// c = t9 + 2^24 / 2^25 -- |c| <= 2^38
+// t9 -= c * 2^25 -- |t9| <= 2^24 < 1.1 * 2^24 (final t9)
+// t0 += c * 19 -- |t0| <= 2^25 + 2^38*19 < 2^44
+//
+// c = t0 + 2^25 / 2^26 -- |c| <= 2^18
+// t0 -= c * 2^26 -- |t0| <= 2^25 < 1.1 * 2^25 (final t0)
+// t1 += c -- |t1| <= 2^24 + 2^18 < 1.1 * 2^24 (final t1)
+//
+// Postcondition
+// -------------
+// |t0|, |t2|, |t4|, |t6|, |t8| < 1.1 * 2^25
+// |t1|, |t3|, |t5|, |t7|, |t9| < 1.1 * 2^24
+#define FE_CARRY \
+ i64 c; \
+ c = (t0 + ((i64)1<<25)) >> 26; t0 -= c * ((i64)1 << 26); t1 += c; \
+ c = (t4 + ((i64)1<<25)) >> 26; t4 -= c * ((i64)1 << 26); t5 += c; \
+ c = (t1 + ((i64)1<<24)) >> 25; t1 -= c * ((i64)1 << 25); t2 += c; \
+ c = (t5 + ((i64)1<<24)) >> 25; t5 -= c * ((i64)1 << 25); t6 += c; \
+ c = (t2 + ((i64)1<<25)) >> 26; t2 -= c * ((i64)1 << 26); t3 += c; \
+ c = (t6 + ((i64)1<<25)) >> 26; t6 -= c * ((i64)1 << 26); t7 += c; \
+ c = (t3 + ((i64)1<<24)) >> 25; t3 -= c * ((i64)1 << 25); t4 += c; \
+ c = (t7 + ((i64)1<<24)) >> 25; t7 -= c * ((i64)1 << 25); t8 += c; \
+ c = (t4 + ((i64)1<<25)) >> 26; t4 -= c * ((i64)1 << 26); t5 += c; \
+ c = (t8 + ((i64)1<<25)) >> 26; t8 -= c * ((i64)1 << 26); t9 += c; \
+ c = (t9 + ((i64)1<<24)) >> 25; t9 -= c * ((i64)1 << 25); t0 += c * 19; \
+ c = (t0 + ((i64)1<<25)) >> 26; t0 -= c * ((i64)1 << 26); t1 += c; \
+ h[0]=(i32)t0; h[1]=(i32)t1; h[2]=(i32)t2; h[3]=(i32)t3; h[4]=(i32)t4; \
+ h[5]=(i32)t5; h[6]=(i32)t6; h[7]=(i32)t7; h[8]=(i32)t8; h[9]=(i32)t9
+
+// Decodes a field element from a byte buffer.
+// mask specifies how many bits we ignore.
+// Traditionally we ignore 1. It's useful for EdDSA,
+// which uses that bit to denote the sign of x.
+// Elligator however uses positive representatives,
+// which means ignoring 2 bits instead.
+static void fe_frombytes_mask(fe h, const u8 s[32], unsigned nb_mask)
+{
+ i32 mask = 0xffffff >> nb_mask;
+ i64 t0 = load32_le(s); // t0 < 2^32
+ i64 t1 = load24_le(s + 4) << 6; // t1 < 2^30
+ i64 t2 = load24_le(s + 7) << 5; // t2 < 2^29
+ i64 t3 = load24_le(s + 10) << 3; // t3 < 2^27
+ i64 t4 = load24_le(s + 13) << 2; // t4 < 2^26
+ i64 t5 = load32_le(s + 16); // t5 < 2^32
+ i64 t6 = load24_le(s + 20) << 7; // t6 < 2^31
+ i64 t7 = load24_le(s + 23) << 5; // t7 < 2^29
+ i64 t8 = load24_le(s + 26) << 4; // t8 < 2^28
+ i64 t9 = (load24_le(s + 29) & mask) << 2; // t9 < 2^25
+ FE_CARRY; // Carry precondition OK
+}
+
+static void fe_frombytes(fe h, const u8 s[32])
+{
+ fe_frombytes_mask(h, s, 1);
+}
+
+
+// Precondition
+// |h[0]|, |h[2]|, |h[4]|, |h[6]|, |h[8]| < 1.1 * 2^25
+// |h[1]|, |h[3]|, |h[5]|, |h[7]|, |h[9]| < 1.1 * 2^24
+//
+// Therefore, |h| < 2^255-19
+// There are two possibilities:
+//
+// - If h is positive, all we need to do is reduce its individual
+// limbs down to their tight positive range.
+// - If h is negative, we also need to add 2^255-19 to it.
+// Or just remove 19 and chop off any excess bit.
+static void fe_tobytes(u8 s[32], const fe h)
+{
+ i32 t[10];
+ COPY(t, h, 10);
+ i32 q = (19 * t[9] + (((i32) 1) << 24)) >> 25;
+ // |t9| < 1.1 * 2^24
+ // -1.1 * 2^24 < t9 < 1.1 * 2^24
+ // -21 * 2^24 < 19 * t9 < 21 * 2^24
+ // -2^29 < 19 * t9 + 2^24 < 2^29
+ // -2^29 / 2^25 < (19 * t9 + 2^24) / 2^25 < 2^29 / 2^25
+ // -16 < (19 * t9 + 2^24) / 2^25 < 16
+ FOR (i, 0, 5) {
+ q += t[2*i ]; q >>= 26; // q = 0 or -1
+ q += t[2*i+1]; q >>= 25; // q = 0 or -1
+ }
+ // q = 0 iff h >= 0
+ // q = -1 iff h < 0
+ // Adding q * 19 to h reduces h to its proper range.
+ q *= 19; // Shift carry back to the beginning
+ FOR (i, 0, 5) {
+ t[i*2 ] += q; q = t[i*2 ] >> 26; t[i*2 ] -= q * ((i32)1 << 26);
+ t[i*2+1] += q; q = t[i*2+1] >> 25; t[i*2+1] -= q * ((i32)1 << 25);
+ }
+ // h is now fully reduced, and q represents the excess bit.
+
+ store32_le(s + 0, ((u32)t[0] >> 0) | ((u32)t[1] << 26));
+ store32_le(s + 4, ((u32)t[1] >> 6) | ((u32)t[2] << 19));
+ store32_le(s + 8, ((u32)t[2] >> 13) | ((u32)t[3] << 13));
+ store32_le(s + 12, ((u32)t[3] >> 19) | ((u32)t[4] << 6));
+ store32_le(s + 16, ((u32)t[5] >> 0) | ((u32)t[6] << 25));
+ store32_le(s + 20, ((u32)t[6] >> 7) | ((u32)t[7] << 19));
+ store32_le(s + 24, ((u32)t[7] >> 13) | ((u32)t[8] << 12));
+ store32_le(s + 28, ((u32)t[8] >> 20) | ((u32)t[9] << 6));
+
+ WIPE_BUFFER(t);
+}
+
+// Precondition
+// -------------
+// |f0|, |f2|, |f4|, |f6|, |f8| < 1.65 * 2^26
+// |f1|, |f3|, |f5|, |f7|, |f9| < 1.65 * 2^25
+//
+// |g0|, |g2|, |g4|, |g6|, |g8| < 1.65 * 2^26
+// |g1|, |g3|, |g5|, |g7|, |g9| < 1.65 * 2^25
+static void fe_mul_small(fe h, const fe f, i32 g)
+{
+ i64 t0 = f[0] * (i64) g; i64 t1 = f[1] * (i64) g;
+ i64 t2 = f[2] * (i64) g; i64 t3 = f[3] * (i64) g;
+ i64 t4 = f[4] * (i64) g; i64 t5 = f[5] * (i64) g;
+ i64 t6 = f[6] * (i64) g; i64 t7 = f[7] * (i64) g;
+ i64 t8 = f[8] * (i64) g; i64 t9 = f[9] * (i64) g;
+ // |t0|, |t2|, |t4|, |t6|, |t8| < 1.65 * 2^26 * 2^31 < 2^58
+ // |t1|, |t3|, |t5|, |t7|, |t9| < 1.65 * 2^25 * 2^31 < 2^57
+
+ FE_CARRY; // Carry precondition OK
+}
+
+// Precondition
+// -------------
+// |f0|, |f2|, |f4|, |f6|, |f8| < 1.65 * 2^26
+// |f1|, |f3|, |f5|, |f7|, |f9| < 1.65 * 2^25
+//
+// |g0|, |g2|, |g4|, |g6|, |g8| < 1.65 * 2^26
+// |g1|, |g3|, |g5|, |g7|, |g9| < 1.65 * 2^25
+static void fe_mul(fe h, const fe f, const fe g)
+{
+ // Everything is unrolled and put in temporary variables.
+ // We could roll the loop, but that would make curve25519 twice as slow.
+ i32 f0 = f[0]; i32 f1 = f[1]; i32 f2 = f[2]; i32 f3 = f[3]; i32 f4 = f[4];
+ i32 f5 = f[5]; i32 f6 = f[6]; i32 f7 = f[7]; i32 f8 = f[8]; i32 f9 = f[9];
+ i32 g0 = g[0]; i32 g1 = g[1]; i32 g2 = g[2]; i32 g3 = g[3]; i32 g4 = g[4];
+ i32 g5 = g[5]; i32 g6 = g[6]; i32 g7 = g[7]; i32 g8 = g[8]; i32 g9 = g[9];
+ i32 F1 = f1*2; i32 F3 = f3*2; i32 F5 = f5*2; i32 F7 = f7*2; i32 F9 = f9*2;
+ i32 G1 = g1*19; i32 G2 = g2*19; i32 G3 = g3*19;
+ i32 G4 = g4*19; i32 G5 = g5*19; i32 G6 = g6*19;
+ i32 G7 = g7*19; i32 G8 = g8*19; i32 G9 = g9*19;
+ // |F1|, |F3|, |F5|, |F7|, |F9| < 1.65 * 2^26
+ // |G0|, |G2|, |G4|, |G6|, |G8| < 2^31
+ // |G1|, |G3|, |G5|, |G7|, |G9| < 2^30
+
+ i64 t0 = f0*(i64)g0 + F1*(i64)G9 + f2*(i64)G8 + F3*(i64)G7 + f4*(i64)G6
+ + F5*(i64)G5 + f6*(i64)G4 + F7*(i64)G3 + f8*(i64)G2 + F9*(i64)G1;
+ i64 t1 = f0*(i64)g1 + f1*(i64)g0 + f2*(i64)G9 + f3*(i64)G8 + f4*(i64)G7
+ + f5*(i64)G6 + f6*(i64)G5 + f7*(i64)G4 + f8*(i64)G3 + f9*(i64)G2;
+ i64 t2 = f0*(i64)g2 + F1*(i64)g1 + f2*(i64)g0 + F3*(i64)G9 + f4*(i64)G8
+ + F5*(i64)G7 + f6*(i64)G6 + F7*(i64)G5 + f8*(i64)G4 + F9*(i64)G3;
+ i64 t3 = f0*(i64)g3 + f1*(i64)g2 + f2*(i64)g1 + f3*(i64)g0 + f4*(i64)G9
+ + f5*(i64)G8 + f6*(i64)G7 + f7*(i64)G6 + f8*(i64)G5 + f9*(i64)G4;
+ i64 t4 = f0*(i64)g4 + F1*(i64)g3 + f2*(i64)g2 + F3*(i64)g1 + f4*(i64)g0
+ + F5*(i64)G9 + f6*(i64)G8 + F7*(i64)G7 + f8*(i64)G6 + F9*(i64)G5;
+ i64 t5 = f0*(i64)g5 + f1*(i64)g4 + f2*(i64)g3 + f3*(i64)g2 + f4*(i64)g1
+ + f5*(i64)g0 + f6*(i64)G9 + f7*(i64)G8 + f8*(i64)G7 + f9*(i64)G6;
+ i64 t6 = f0*(i64)g6 + F1*(i64)g5 + f2*(i64)g4 + F3*(i64)g3 + f4*(i64)g2
+ + F5*(i64)g1 + f6*(i64)g0 + F7*(i64)G9 + f8*(i64)G8 + F9*(i64)G7;
+ i64 t7 = f0*(i64)g7 + f1*(i64)g6 + f2*(i64)g5 + f3*(i64)g4 + f4*(i64)g3
+ + f5*(i64)g2 + f6*(i64)g1 + f7*(i64)g0 + f8*(i64)G9 + f9*(i64)G8;
+ i64 t8 = f0*(i64)g8 + F1*(i64)g7 + f2*(i64)g6 + F3*(i64)g5 + f4*(i64)g4
+ + F5*(i64)g3 + f6*(i64)g2 + F7*(i64)g1 + f8*(i64)g0 + F9*(i64)G9;
+ i64 t9 = f0*(i64)g9 + f1*(i64)g8 + f2*(i64)g7 + f3*(i64)g6 + f4*(i64)g5
+ + f5*(i64)g4 + f6*(i64)g3 + f7*(i64)g2 + f8*(i64)g1 + f9*(i64)g0;
+ // t0 < 0.67 * 2^61
+ // t1 < 0.41 * 2^61
+ // t2 < 0.52 * 2^61
+ // t3 < 0.32 * 2^61
+ // t4 < 0.38 * 2^61
+ // t5 < 0.22 * 2^61
+ // t6 < 0.23 * 2^61
+ // t7 < 0.13 * 2^61
+ // t8 < 0.09 * 2^61
+ // t9 < 0.03 * 2^61
+
+ FE_CARRY; // Everything below 2^62, Carry precondition OK
+}
+
+// Precondition
+// -------------
+// |f0|, |f2|, |f4|, |f6|, |f8| < 1.65 * 2^26
+// |f1|, |f3|, |f5|, |f7|, |f9| < 1.65 * 2^25
+//
+// Note: we could use fe_mul() for this, but this is significantly faster
+static void fe_sq(fe h, const fe f)
+{
+ i32 f0 = f[0]; i32 f1 = f[1]; i32 f2 = f[2]; i32 f3 = f[3]; i32 f4 = f[4];
+ i32 f5 = f[5]; i32 f6 = f[6]; i32 f7 = f[7]; i32 f8 = f[8]; i32 f9 = f[9];
+ i32 f0_2 = f0*2; i32 f1_2 = f1*2; i32 f2_2 = f2*2; i32 f3_2 = f3*2;
+ i32 f4_2 = f4*2; i32 f5_2 = f5*2; i32 f6_2 = f6*2; i32 f7_2 = f7*2;
+ i32 f5_38 = f5*38; i32 f6_19 = f6*19; i32 f7_38 = f7*38;
+ i32 f8_19 = f8*19; i32 f9_38 = f9*38;
+ // |f0_2| , |f2_2| , |f4_2| , |f6_2| , |f8_2| < 1.65 * 2^27
+ // |f1_2| , |f3_2| , |f5_2| , |f7_2| , |f9_2| < 1.65 * 2^26
+ // |f5_38|, |f6_19|, |f7_38|, |f8_19|, |f9_38| < 2^31
+
+ i64 t0 = f0 *(i64)f0 + f1_2*(i64)f9_38 + f2_2*(i64)f8_19
+ + f3_2*(i64)f7_38 + f4_2*(i64)f6_19 + f5 *(i64)f5_38;
+ i64 t1 = f0_2*(i64)f1 + f2 *(i64)f9_38 + f3_2*(i64)f8_19
+ + f4 *(i64)f7_38 + f5_2*(i64)f6_19;
+ i64 t2 = f0_2*(i64)f2 + f1_2*(i64)f1 + f3_2*(i64)f9_38
+ + f4_2*(i64)f8_19 + f5_2*(i64)f7_38 + f6 *(i64)f6_19;
+ i64 t3 = f0_2*(i64)f3 + f1_2*(i64)f2 + f4 *(i64)f9_38
+ + f5_2*(i64)f8_19 + f6 *(i64)f7_38;
+ i64 t4 = f0_2*(i64)f4 + f1_2*(i64)f3_2 + f2 *(i64)f2
+ + f5_2*(i64)f9_38 + f6_2*(i64)f8_19 + f7 *(i64)f7_38;
+ i64 t5 = f0_2*(i64)f5 + f1_2*(i64)f4 + f2_2*(i64)f3
+ + f6 *(i64)f9_38 + f7_2*(i64)f8_19;
+ i64 t6 = f0_2*(i64)f6 + f1_2*(i64)f5_2 + f2_2*(i64)f4
+ + f3_2*(i64)f3 + f7_2*(i64)f9_38 + f8 *(i64)f8_19;
+ i64 t7 = f0_2*(i64)f7 + f1_2*(i64)f6 + f2_2*(i64)f5
+ + f3_2*(i64)f4 + f8 *(i64)f9_38;
+ i64 t8 = f0_2*(i64)f8 + f1_2*(i64)f7_2 + f2_2*(i64)f6
+ + f3_2*(i64)f5_2 + f4 *(i64)f4 + f9 *(i64)f9_38;
+ i64 t9 = f0_2*(i64)f9 + f1_2*(i64)f8 + f2_2*(i64)f7
+ + f3_2*(i64)f6 + f4 *(i64)f5_2;
+ // t0 < 0.67 * 2^61
+ // t1 < 0.41 * 2^61
+ // t2 < 0.52 * 2^61
+ // t3 < 0.32 * 2^61
+ // t4 < 0.38 * 2^61
+ // t5 < 0.22 * 2^61
+ // t6 < 0.23 * 2^61
+ // t7 < 0.13 * 2^61
+ // t8 < 0.09 * 2^61
+ // t9 < 0.03 * 2^61
+
+ FE_CARRY;
+}
+
+// Parity check. Returns 0 if even, 1 if odd
+static int fe_isodd(const fe f)
+{
+ u8 s[32];
+ fe_tobytes(s, f);
+ u8 isodd = s[0] & 1;
+ WIPE_BUFFER(s);
+ return isodd;
+}
+
+// Returns 1 if equal, 0 if not equal
+static int fe_isequal(const fe f, const fe g)
+{
+ u8 fs[32];
+ u8 gs[32];
+ fe_tobytes(fs, f);
+ fe_tobytes(gs, g);
+ int isdifferent = crypto_verify32(fs, gs);
+ WIPE_BUFFER(fs);
+ WIPE_BUFFER(gs);
+ return 1 + isdifferent;
+}
+
+// Inverse square root.
+// Returns true if x is a square, false otherwise.
+// After the call:
+// isr = sqrt(1/x) if x is a non-zero square.
+// isr = sqrt(sqrt(-1)/x) if x is not a square.
+// isr = 0 if x is zero.
+// We do not guarantee the sign of the square root.
+//
+// Notes:
+// Let quartic = x^((p-1)/4)
+//
+// x^((p-1)/2) = chi(x)
+// quartic^2 = chi(x)
+// quartic = sqrt(chi(x))
+// quartic = 1 or -1 or sqrt(-1) or -sqrt(-1)
+//
+// Note that x is a square if quartic is 1 or -1
+// There are 4 cases to consider:
+//
+// if quartic = 1 (x is a square)
+// then x^((p-1)/4) = 1
+// x^((p-5)/4) * x = 1
+// x^((p-5)/4) = 1/x
+// x^((p-5)/8) = sqrt(1/x) or -sqrt(1/x)
+//
+// if quartic = -1 (x is a square)
+// then x^((p-1)/4) = -1
+// x^((p-5)/4) * x = -1
+// x^((p-5)/4) = -1/x
+// x^((p-5)/8) = sqrt(-1) / sqrt(x)
+// x^((p-5)/8) * sqrt(-1) = sqrt(-1)^2 / sqrt(x)
+// x^((p-5)/8) * sqrt(-1) = -1/sqrt(x)
+// x^((p-5)/8) * sqrt(-1) = -sqrt(1/x) or sqrt(1/x)
+//
+// if quartic = sqrt(-1) (x is not a square)
+// then x^((p-1)/4) = sqrt(-1)
+// x^((p-5)/4) * x = sqrt(-1)
+// x^((p-5)/4) = sqrt(-1)/x
+// x^((p-5)/8) = sqrt(sqrt(-1)/x) or -sqrt(sqrt(-1)/x)
+//
+// Note that the product of two non-squares is always a square:
+// For any non-squares a and b, chi(a) = -1 and chi(b) = -1.
+// Since chi(x) = x^((p-1)/2), chi(a)*chi(b) = chi(a*b) = 1.
+// Therefore a*b is a square.
+//
+// Since sqrt(-1) and x are both non-squares, their product is a
+// square, and we can compute their square root.
+//
+// if quartic = -sqrt(-1) (x is not a square)
+// then x^((p-1)/4) = -sqrt(-1)
+// x^((p-5)/4) * x = -sqrt(-1)
+// x^((p-5)/4) = -sqrt(-1)/x
+// x^((p-5)/8) = sqrt(-sqrt(-1)/x)
+// x^((p-5)/8) = sqrt( sqrt(-1)/x) * sqrt(-1)
+// x^((p-5)/8) * sqrt(-1) = sqrt( sqrt(-1)/x) * sqrt(-1)^2
+// x^((p-5)/8) * sqrt(-1) = sqrt( sqrt(-1)/x) * -1
+// x^((p-5)/8) * sqrt(-1) = -sqrt(sqrt(-1)/x) or sqrt(sqrt(-1)/x)
+static int invsqrt(fe isr, const fe x)
+{
+ fe t0, t1, t2;
+
+ // t0 = x^((p-5)/8)
+ // Can be achieved with a simple double & add ladder,
+ // but it would be slower.
+ fe_sq(t0, x);
+ fe_sq(t1,t0); fe_sq(t1, t1); fe_mul(t1, x, t1);
+ fe_mul(t0, t0, t1);
+ fe_sq(t0, t0); fe_mul(t0, t1, t0);
+ fe_sq(t1, t0); FOR (i, 1, 5) fe_sq(t1, t1); fe_mul(t0, t1, t0);
+ fe_sq(t1, t0); FOR (i, 1, 10) fe_sq(t1, t1); fe_mul(t1, t1, t0);
+ fe_sq(t2, t1); FOR (i, 1, 20) fe_sq(t2, t2); fe_mul(t1, t2, t1);
+ fe_sq(t1, t1); FOR (i, 1, 10) fe_sq(t1, t1); fe_mul(t0, t1, t0);
+ fe_sq(t1, t0); FOR (i, 1, 50) fe_sq(t1, t1); fe_mul(t1, t1, t0);
+ fe_sq(t2, t1); FOR (i, 1, 100) fe_sq(t2, t2); fe_mul(t1, t2, t1);
+ fe_sq(t1, t1); FOR (i, 1, 50) fe_sq(t1, t1); fe_mul(t0, t1, t0);
+ fe_sq(t0, t0); FOR (i, 1, 2) fe_sq(t0, t0); fe_mul(t0, t0, x);
+
+ // quartic = x^((p-1)/4)
+ i32 *quartic = t1;
+ fe_sq (quartic, t0);
+ fe_mul(quartic, quartic, x);
+
+ i32 *check = t2;
+ fe_0 (check); int z0 = fe_isequal(x , check);
+ fe_1 (check); int p1 = fe_isequal(quartic, check);
+ fe_neg(check, check ); int m1 = fe_isequal(quartic, check);
+ fe_neg(check, sqrtm1); int ms = fe_isequal(quartic, check);
+
+ // if quartic == -1 or sqrt(-1)
+ // then isr = x^((p-1)/4) * sqrt(-1)
+ // else isr = x^((p-1)/4)
+ fe_mul(isr, t0, sqrtm1);
+ fe_ccopy(isr, t0, 1 - (m1 | ms));
+
+ WIPE_BUFFER(t0);
+ WIPE_BUFFER(t1);
+ WIPE_BUFFER(t2);
+ return p1 | m1 | z0;
+}
+
+// Inverse in terms of inverse square root.
+// Requires two additional squarings to get rid of the sign.
+//
+// 1/x = x * (+invsqrt(x^2))^2
+// = x * (-invsqrt(x^2))^2
+//
+// A fully optimised exponentiation by p-1 would save 6 field
+// multiplications, but it would require more code.
+static void fe_invert(fe out, const fe x)
+{
+ fe tmp;
+ fe_sq(tmp, x);
+ invsqrt(tmp, tmp);
+ fe_sq(tmp, tmp);
+ fe_mul(out, tmp, x);
+ WIPE_BUFFER(tmp);
+}
+
+// trim a scalar for scalar multiplication
+static void trim_scalar(u8 scalar[32])
+{
+ scalar[ 0] &= 248;
+ scalar[31] &= 127;
+ scalar[31] |= 64;
+}
+
+// get bit from scalar at position i
+static int scalar_bit(const u8 s[32], int i)
+{
+ if (i < 0) { return 0; } // handle -1 for sliding windows
+ return (s[i>>3] >> (i&7)) & 1;
+}
+
+///////////////
+/// X-25519 /// Taken from SUPERCOP's ref10 implementation.
+///////////////
+static void scalarmult(u8 q[32], const u8 scalar[32], const u8 p[32],
+ int nb_bits)
+{
+ // computes the scalar product
+ fe x1;
+ fe_frombytes(x1, p);
+
+ // computes the actual scalar product (the result is in x2 and z2)
+ fe x2, z2, x3, z3, t0, t1;
+ // Montgomery ladder
+ // In projective coordinates, to avoid divisions: x = X / Z
+ // We don't care about the y coordinate, it's only 1 bit of information
+ fe_1(x2); fe_0(z2); // "zero" point
+ fe_copy(x3, x1); fe_1(z3); // "one" point
+ int swap = 0;
+ for (int pos = nb_bits-1; pos >= 0; --pos) {
+ // constant time conditional swap before ladder step
+ int b = scalar_bit(scalar, pos);
+ swap ^= b; // xor trick avoids swapping at the end of the loop
+ fe_cswap(x2, x3, swap);
+ fe_cswap(z2, z3, swap);
+ swap = b; // anticipates one last swap after the loop
+
+ // Montgomery ladder step: replaces (P2, P3) by (P2*2, P2+P3)
+ // with differential addition
+ fe_sub(t0, x3, z3);
+ fe_sub(t1, x2, z2);
+ fe_add(x2, x2, z2);
+ fe_add(z2, x3, z3);
+ fe_mul(z3, t0, x2);
+ fe_mul(z2, z2, t1);
+ fe_sq (t0, t1 );
+ fe_sq (t1, x2 );
+ fe_add(x3, z3, z2);
+ fe_sub(z2, z3, z2);
+ fe_mul(x2, t1, t0);
+ fe_sub(t1, t1, t0);
+ fe_sq (z2, z2 );
+ fe_mul_small(z3, t1, 121666);
+ fe_sq (x3, x3 );
+ fe_add(t0, t0, z3);
+ fe_mul(z3, x1, z2);
+ fe_mul(z2, t1, t0);
+ }
+ // last swap is necessary to compensate for the xor trick
+ // Note: after this swap, P3 == P2 + P1.
+ fe_cswap(x2, x3, swap);
+ fe_cswap(z2, z3, swap);
+
+ // normalises the coordinates: x == X / Z
+ fe_invert(z2, z2);
+ fe_mul(x2, x2, z2);
+ fe_tobytes(q, x2);
+
+ WIPE_BUFFER(x1);
+ WIPE_BUFFER(x2); WIPE_BUFFER(z2); WIPE_BUFFER(t0);
+ WIPE_BUFFER(x3); WIPE_BUFFER(z3); WIPE_BUFFER(t1);
+}
+
+void crypto_x25519(u8 raw_shared_secret[32],
+ const u8 your_secret_key [32],
+ const u8 their_public_key [32])
+{
+ // restrict the possible scalar values
+ u8 e[32];
+ COPY(e, your_secret_key, 32);
+ trim_scalar(e);
+ scalarmult(raw_shared_secret, e, their_public_key, 255);
+ WIPE_BUFFER(e);
+}
+
+void crypto_x25519_public_key(u8 public_key[32],
+ const u8 secret_key[32])
+{
+ static const u8 base_point[32] = {9};
+ crypto_x25519(public_key, secret_key, base_point);
+}
+
+///////////////////////////
+/// Arithmetic modulo L ///
+///////////////////////////
+static const u32 L[8] = {0x5cf5d3ed, 0x5812631a, 0xa2f79cd6, 0x14def9de,
+ 0x00000000, 0x00000000, 0x00000000, 0x10000000,};
+
+// p = a*b + p
+static void multiply(u32 p[16], const u32 a[8], const u32 b[8])
+{
+ FOR (i, 0, 8) {
+ u64 carry = 0;
+ FOR (j, 0, 8) {
+ carry += p[i+j] + (u64)a[i] * b[j];
+ p[i+j] = (u32)carry;
+ carry >>= 32;
+ }
+ p[i+8] = (u32)carry;
+ }
+}
+
+static int is_above_l(const u32 x[8])
+{
+ // We work with L directly, in a 2's complement encoding
+ // (-L == ~L + 1)
+ u64 carry = 1;
+ FOR (i, 0, 8) {
+ carry += (u64)x[i] + (~L[i] & 0xffffffff);
+ carry >>= 32;
+ }
+ return (int)carry; // carry is either 0 or 1
+}
+
+// Final reduction modulo L, by conditionally removing L.
+// if x < l , then r = x
+// if l <= x 2*l, then r = x-l
+// otherwise the result will be wrong
+static void remove_l(u32 r[8], const u32 x[8])
+{
+ u64 carry = is_above_l(x);
+ u32 mask = ~(u32)carry + 1; // carry == 0 or 1
+ FOR (i, 0, 8) {
+ carry += (u64)x[i] + (~L[i] & mask);
+ r[i] = (u32)carry;
+ carry >>= 32;
+ }
+}
+
+// Full reduction modulo L (Barrett reduction)
+static void mod_l(u8 reduced[32], const u32 x[16])
+{
+ static const u32 r[9] = {0x0a2c131b,0xed9ce5a3,0x086329a7,0x2106215d,
+ 0xffffffeb,0xffffffff,0xffffffff,0xffffffff,0xf,};
+ // xr = x * r
+ u32 xr[25] = {0};
+ FOR (i, 0, 9) {
+ u64 carry = 0;
+ FOR (j, 0, 16) {
+ carry += xr[i+j] + (u64)r[i] * x[j];
+ xr[i+j] = (u32)carry;
+ carry >>= 32;
+ }
+ xr[i+16] = (u32)carry;
+ }
+ // xr = floor(xr / 2^512) * L
+ // Since the result is guaranteed to be below 2*L,
+ // it is enough to only compute the first 256 bits.
+ // The division is performed by saying xr[i+16]. (16 * 32 = 512)
+ ZERO(xr, 8);
+ FOR (i, 0, 8) {
+ u64 carry = 0;
+ FOR (j, 0, 8-i) {
+ carry += xr[i+j] + (u64)xr[i+16] * L[j];
+ xr[i+j] = (u32)carry;
+ carry >>= 32;
+ }
+ }
+ // xr = x - xr
+ u64 carry = 1;
+ FOR (i, 0, 8) {
+ carry += (u64)x[i] + (~xr[i] & 0xffffffff);
+ xr[i] = (u32)carry;
+ carry >>= 32;
+ }
+ // Final reduction modulo L (conditional subtraction)
+ remove_l(xr, xr);
+ store32_le_buf(reduced, xr, 8);
+
+ WIPE_BUFFER(xr);
+}
+
+static void reduce(u8 r[64])
+{
+ u32 x[16];
+ load32_le_buf(x, r, 16);
+ mod_l(r, x);
+ WIPE_BUFFER(x);
+}
+
+// r = (a * b) + c
+static void mul_add(u8 r[32], const u8 a[32], const u8 b[32], const u8 c[32])
+{
+ u32 A[8]; load32_le_buf(A, a, 8);
+ u32 B[8]; load32_le_buf(B, b, 8);
+ u32 p[16]; load32_le_buf(p, c, 8); ZERO(p + 8, 8);
+ multiply(p, A, B);
+ mod_l(r, p);
+ WIPE_BUFFER(p);
+ WIPE_BUFFER(A);
+ WIPE_BUFFER(B);
+}
+
+///////////////
+/// Ed25519 ///
+///////////////
+
+// Point (group element, ge) in a twisted Edwards curve,
+// in extended projective coordinates.
+// ge : x = X/Z, y = Y/Z, T = XY/Z
+// ge_cached : Yp = X+Y, Ym = X-Y, T2 = T*D2
+// ge_precomp: Z = 1
+typedef struct { fe X; fe Y; fe Z; fe T; } ge;
+typedef struct { fe Yp; fe Ym; fe Z; fe T2; } ge_cached;
+typedef struct { fe Yp; fe Ym; fe T2; } ge_precomp;
+
+static void ge_zero(ge *p)
+{
+ fe_0(p->X);
+ fe_1(p->Y);
+ fe_1(p->Z);
+ fe_0(p->T);
+}
+
+static void ge_tobytes(u8 s[32], const ge *h)
+{
+ fe recip, x, y;
+ fe_invert(recip, h->Z);
+ fe_mul(x, h->X, recip);
+ fe_mul(y, h->Y, recip);
+ fe_tobytes(s, y);
+ s[31] ^= fe_isodd(x) << 7;
+
+ WIPE_BUFFER(recip);
+ WIPE_BUFFER(x);
+ WIPE_BUFFER(y);
+}
+
+// h = -s, where s is a point encoded in 32 bytes
+//
+// Variable time! Inputs must not be secret!
+// => Use only to *check* signatures.
+//
+// From the specifications:
+// The encoding of s contains y and the sign of x
+// x = sqrt((y^2 - 1) / (d*y^2 + 1))
+// In extended coordinates:
+// X = x, Y = y, Z = 1, T = x*y
+//
+// Note that num * den is a square iff num / den is a square
+// If num * den is not a square, the point was not on the curve.
+// From the above:
+// Let num = y^2 - 1
+// Let den = d*y^2 + 1
+// x = sqrt((y^2 - 1) / (d*y^2 + 1))
+// x = sqrt(num / den)
+// x = sqrt(num^2 / (num * den))
+// x = num * sqrt(1 / (num * den))
+//
+// Therefore, we can just compute:
+// num = y^2 - 1
+// den = d*y^2 + 1
+// isr = invsqrt(num * den) // abort if not square
+// x = num * isr
+// Finally, negate x if its sign is not as specified.
+static int ge_frombytes_neg_vartime(ge *h, const u8 s[32])
+{
+ fe_frombytes(h->Y, s);
+ fe_1(h->Z);
+ fe_sq (h->T, h->Y); // t = y^2
+ fe_mul(h->X, h->T, d ); // x = d*y^2
+ fe_sub(h->T, h->T, h->Z); // t = y^2 - 1
+ fe_add(h->X, h->X, h->Z); // x = d*y^2 + 1
+ fe_mul(h->X, h->T, h->X); // x = (y^2 - 1) * (d*y^2 + 1)
+ int is_square = invsqrt(h->X, h->X);
+ if (!is_square) {
+ return -1; // Not on the curve, abort
+ }
+ fe_mul(h->X, h->T, h->X); // x = sqrt((y^2 - 1) / (d*y^2 + 1))
+ if (fe_isodd(h->X) == (s[31] >> 7)) {
+ fe_neg(h->X, h->X);
+ }
+ fe_mul(h->T, h->X, h->Y);
+ return 0;
+}
+
+static void ge_cache(ge_cached *c, const ge *p)
+{
+ fe_add (c->Yp, p->Y, p->X);
+ fe_sub (c->Ym, p->Y, p->X);
+ fe_copy(c->Z , p->Z );
+ fe_mul (c->T2, p->T, D2 );
+}
+
+// Internal buffers are not wiped! Inputs must not be secret!
+// => Use only to *check* signatures.
+static void ge_add(ge *s, const ge *p, const ge_cached *q)
+{
+ fe a, b;
+ fe_add(a , p->Y, p->X );
+ fe_sub(b , p->Y, p->X );
+ fe_mul(a , a , q->Yp);
+ fe_mul(b , b , q->Ym);
+ fe_add(s->Y, a , b );
+ fe_sub(s->X, a , b );
+
+ fe_add(s->Z, p->Z, p->Z );
+ fe_mul(s->Z, s->Z, q->Z );
+ fe_mul(s->T, p->T, q->T2);
+ fe_add(a , s->Z, s->T );
+ fe_sub(b , s->Z, s->T );
+
+ fe_mul(s->T, s->X, s->Y);
+ fe_mul(s->X, s->X, b );
+ fe_mul(s->Y, s->Y, a );
+ fe_mul(s->Z, a , b );
+}
+
+// Internal buffers are not wiped! Inputs must not be secret!
+// => Use only to *check* signatures.
+static void ge_sub(ge *s, const ge *p, const ge_cached *q)
+{
+ ge_cached neg;
+ fe_copy(neg.Ym, q->Yp);
+ fe_copy(neg.Yp, q->Ym);
+ fe_copy(neg.Z , q->Z );
+ fe_neg (neg.T2, q->T2);
+ ge_add(s, p, &neg);
+}
+
+static void ge_madd(ge *s, const ge *p, const ge_precomp *q, fe a, fe b)
+{
+ fe_add(a , p->Y, p->X );
+ fe_sub(b , p->Y, p->X );
+ fe_mul(a , a , q->Yp);
+ fe_mul(b , b , q->Ym);
+ fe_add(s->Y, a , b );
+ fe_sub(s->X, a , b );
+
+ fe_add(s->Z, p->Z, p->Z );
+ fe_mul(s->T, p->T, q->T2);
+ fe_add(a , s->Z, s->T );
+ fe_sub(b , s->Z, s->T );
+
+ fe_mul(s->T, s->X, s->Y);
+ fe_mul(s->X, s->X, b );
+ fe_mul(s->Y, s->Y, a );
+ fe_mul(s->Z, a , b );
+}
+
+// Internal buffers are not wiped! Inputs must not be secret!
+// => Use only to *check* signatures.
+static void ge_msub(ge *s, const ge *p, const ge_precomp *q, fe a, fe b)
+{
+ ge_precomp neg;
+ fe_copy(neg.Ym, q->Yp);
+ fe_copy(neg.Yp, q->Ym);
+ fe_neg (neg.T2, q->T2);
+ ge_madd(s, p, &neg, a, b);
+}
+
+static void ge_double(ge *s, const ge *p, ge *q)
+{
+ fe_sq (q->X, p->X);
+ fe_sq (q->Y, p->Y);
+ fe_sq (q->Z, p->Z); // qZ = pZ^2
+ fe_mul_small(q->Z, q->Z, 2); // qZ = pZ^2 * 2
+ fe_add(q->T, p->X, p->Y);
+ fe_sq (s->T, q->T);
+ fe_add(q->T, q->Y, q->X);
+ fe_sub(q->Y, q->Y, q->X);
+ fe_sub(q->X, s->T, q->T);
+ fe_sub(q->Z, q->Z, q->Y);
+
+ fe_mul(s->X, q->X , q->Z);
+ fe_mul(s->Y, q->T , q->Y);
+ fe_mul(s->Z, q->Y , q->Z);
+ fe_mul(s->T, q->X , q->T);
+}
+
+// 5-bit signed window in cached format (Niels coordinates, Z=1)
+static const ge_precomp b_window[8] = {
+ {{25967493,-14356035,29566456,3660896,-12694345,
+ 4014787,27544626,-11754271,-6079156,2047605,},
+ {-12545711,934262,-2722910,3049990,-727428,
+ 9406986,12720692,5043384,19500929,-15469378,},
+ {-8738181,4489570,9688441,-14785194,10184609,
+ -12363380,29287919,11864899,-24514362,-4438546,},},
+ {{15636291,-9688557,24204773,-7912398,616977,
+ -16685262,27787600,-14772189,28944400,-1550024,},
+ {16568933,4717097,-11556148,-1102322,15682896,
+ -11807043,16354577,-11775962,7689662,11199574,},
+ {30464156,-5976125,-11779434,-15670865,23220365,
+ 15915852,7512774,10017326,-17749093,-9920357,},},
+ {{10861363,11473154,27284546,1981175,-30064349,
+ 12577861,32867885,14515107,-15438304,10819380,},
+ {4708026,6336745,20377586,9066809,-11272109,
+ 6594696,-25653668,12483688,-12668491,5581306,},
+ {19563160,16186464,-29386857,4097519,10237984,
+ -4348115,28542350,13850243,-23678021,-15815942,},},
+ {{5153746,9909285,1723747,-2777874,30523605,
+ 5516873,19480852,5230134,-23952439,-15175766,},
+ {-30269007,-3463509,7665486,10083793,28475525,
+ 1649722,20654025,16520125,30598449,7715701,},
+ {28881845,14381568,9657904,3680757,-20181635,
+ 7843316,-31400660,1370708,29794553,-1409300,},},
+ {{-22518993,-6692182,14201702,-8745502,-23510406,
+ 8844726,18474211,-1361450,-13062696,13821877,},
+ {-6455177,-7839871,3374702,-4740862,-27098617,
+ -10571707,31655028,-7212327,18853322,-14220951,},
+ {4566830,-12963868,-28974889,-12240689,-7602672,
+ -2830569,-8514358,-10431137,2207753,-3209784,},},
+ {{-25154831,-4185821,29681144,7868801,-6854661,
+ -9423865,-12437364,-663000,-31111463,-16132436,},
+ {25576264,-2703214,7349804,-11814844,16472782,
+ 9300885,3844789,15725684,171356,6466918,},
+ {23103977,13316479,9739013,-16149481,817875,
+ -15038942,8965339,-14088058,-30714912,16193877,},},
+ {{-33521811,3180713,-2394130,14003687,-16903474,
+ -16270840,17238398,4729455,-18074513,9256800,},
+ {-25182317,-4174131,32336398,5036987,-21236817,
+ 11360617,22616405,9761698,-19827198,630305,},
+ {-13720693,2639453,-24237460,-7406481,9494427,
+ -5774029,-6554551,-15960994,-2449256,-14291300,},},
+ {{-3151181,-5046075,9282714,6866145,-31907062,
+ -863023,-18940575,15033784,25105118,-7894876,},
+ {-24326370,15950226,-31801215,-14592823,-11662737,
+ -5090925,1573892,-2625887,2198790,-15804619,},
+ {-3099351,10324967,-2241613,7453183,-5446979,
+ -2735503,-13812022,-16236442,-32461234,-12290683,},},
+};
+
+// Incremental sliding windows (left to right)
+// Based on Roberto Maria Avanzi[2005]
+typedef struct {
+ i16 next_index; // position of the next signed digit
+ i8 next_digit; // next signed digit (odd number below 2^window_width)
+ u8 next_check; // point at which we must check for a new window
+} slide_ctx;
+
+static void slide_init(slide_ctx *ctx, const u8 scalar[32])
+{
+ // scalar is guaranteed to be below L, either because we checked (s),
+ // or because we reduced it modulo L (h_ram). L is under 2^253, so
+ // so bits 253 to 255 are guaranteed to be zero. No need to test them.
+ //
+ // Note however that L is very close to 2^252, so bit 252 is almost
+ // always zero. If we were to start at bit 251, the tests wouldn't
+ // catch the off-by-one error (constructing one that does would be
+ // prohibitively expensive).
+ //
+ // We should still check bit 252, though.
+ int i = 252;
+ while (i > 0 && scalar_bit(scalar, i) == 0) {
+ i--;
+ }
+ ctx->next_check = (u8)(i + 1);
+ ctx->next_index = -1;
+ ctx->next_digit = -1;
+}
+
+static int slide_step(slide_ctx *ctx, int width, int i, const u8 scalar[32])
+{
+ if (i == ctx->next_check) {
+ if (scalar_bit(scalar, i) == scalar_bit(scalar, i - 1)) {
+ ctx->next_check--;
+ } else {
+ // compute digit of next window
+ int w = MIN(width, i + 1);
+ int v = -(scalar_bit(scalar, i) << (w-1));
+ FOR_T (int, j, 0, w-1) {
+ v += scalar_bit(scalar, i-(w-1)+j) << j;
+ }
+ v += scalar_bit(scalar, i-w);
+ int lsb = v & (~v + 1); // smallest bit of v
+ int s = ( ((lsb & 0xAA) != 0) // log2(lsb)
+ | (((lsb & 0xCC) != 0) << 1)
+ | (((lsb & 0xF0) != 0) << 2));
+ ctx->next_index = (i16)(i-(w-1)+s);
+ ctx->next_digit = (i8) (v >> s );
+ ctx->next_check -= (u8) w;
+ }
+ }
+ return i == ctx->next_index ? ctx->next_digit: 0;
+}
+
+#define P_W_WIDTH 3 // Affects the size of the stack
+#define B_W_WIDTH 5 // Affects the size of the binary
+#define P_W_SIZE (1<<(P_W_WIDTH-2))
+
+// P = [b]B + [p]P, where B is the base point
+//
+// Variable time! Internal buffers are not wiped! Inputs must not be secret!
+// => Use only to *check* signatures.
+static void ge_double_scalarmult_vartime(ge *P, const u8 p[32], const u8 b[32])
+{
+ // cache P window for addition
+ ge_cached cP[P_W_SIZE];
+ {
+ ge P2, tmp;
+ ge_double(&P2, P, &tmp);
+ ge_cache(&cP[0], P);
+ FOR (i, 1, P_W_SIZE) {
+ ge_add(&tmp, &P2, &cP[i-1]);
+ ge_cache(&cP[i], &tmp);
+ }
+ }
+
+ // Merged double and add ladder, fused with sliding
+ slide_ctx p_slide; slide_init(&p_slide, p);
+ slide_ctx b_slide; slide_init(&b_slide, b);
+ int i = MAX(p_slide.next_check, b_slide.next_check);
+ ge *sum = P;
+ ge_zero(sum);
+ while (i >= 0) {
+ ge tmp;
+ ge_double(sum, sum, &tmp);
+ int p_digit = slide_step(&p_slide, P_W_WIDTH, i, p);
+ int b_digit = slide_step(&b_slide, B_W_WIDTH, i, b);
+ if (p_digit > 0) { ge_add(sum, sum, &cP[ p_digit / 2]); }
+ if (p_digit < 0) { ge_sub(sum, sum, &cP[-p_digit / 2]); }
+ fe t1, t2;
+ if (b_digit > 0) { ge_madd(sum, sum, b_window + b_digit/2, t1, t2); }
+ if (b_digit < 0) { ge_msub(sum, sum, b_window + -b_digit/2, t1, t2); }
+ i--;
+ }
+}
+
+// 5-bit signed comb in cached format (Niels coordinates, Z=1)
+static const ge_precomp b_comb_low[8] = {
+ {{-6816601,-2324159,-22559413,124364,18015490,
+ 8373481,19993724,1979872,-18549925,9085059,},
+ {10306321,403248,14839893,9633706,8463310,
+ -8354981,-14305673,14668847,26301366,2818560,},
+ {-22701500,-3210264,-13831292,-2927732,-16326337,
+ -14016360,12940910,177905,12165515,-2397893,},},
+ {{-12282262,-7022066,9920413,-3064358,-32147467,
+ 2927790,22392436,-14852487,2719975,16402117,},
+ {-7236961,-4729776,2685954,-6525055,-24242706,
+ -15940211,-6238521,14082855,10047669,12228189,},
+ {-30495588,-12893761,-11161261,3539405,-11502464,
+ 16491580,-27286798,-15030530,-7272871,-15934455,},},
+ {{17650926,582297,-860412,-187745,-12072900,
+ -10683391,-20352381,15557840,-31072141,-5019061,},
+ {-6283632,-2259834,-4674247,-4598977,-4089240,
+ 12435688,-31278303,1060251,6256175,10480726,},
+ {-13871026,2026300,-21928428,-2741605,-2406664,
+ -8034988,7355518,15733500,-23379862,7489131,},},
+ {{6883359,695140,23196907,9644202,-33430614,
+ 11354760,-20134606,6388313,-8263585,-8491918,},
+ {-7716174,-13605463,-13646110,14757414,-19430591,
+ -14967316,10359532,-11059670,-21935259,12082603,},
+ {-11253345,-15943946,10046784,5414629,24840771,
+ 8086951,-6694742,9868723,15842692,-16224787,},},
+ {{9639399,11810955,-24007778,-9320054,3912937,
+ -9856959,996125,-8727907,-8919186,-14097242,},
+ {7248867,14468564,25228636,-8795035,14346339,
+ 8224790,6388427,-7181107,6468218,-8720783,},
+ {15513115,15439095,7342322,-10157390,18005294,
+ -7265713,2186239,4884640,10826567,7135781,},},
+ {{-14204238,5297536,-5862318,-6004934,28095835,
+ 4236101,-14203318,1958636,-16816875,3837147,},
+ {-5511166,-13176782,-29588215,12339465,15325758,
+ -15945770,-8813185,11075932,-19608050,-3776283,},
+ {11728032,9603156,-4637821,-5304487,-7827751,
+ 2724948,31236191,-16760175,-7268616,14799772,},},
+ {{-28842672,4840636,-12047946,-9101456,-1445464,
+ 381905,-30977094,-16523389,1290540,12798615,},
+ {27246947,-10320914,14792098,-14518944,5302070,
+ -8746152,-3403974,-4149637,-27061213,10749585,},
+ {25572375,-6270368,-15353037,16037944,1146292,
+ 32198,23487090,9585613,24714571,-1418265,},},
+ {{19844825,282124,-17583147,11004019,-32004269,
+ -2716035,6105106,-1711007,-21010044,14338445,},
+ {8027505,8191102,-18504907,-12335737,25173494,
+ -5923905,15446145,7483684,-30440441,10009108,},
+ {-14134701,-4174411,10246585,-14677495,33553567,
+ -14012935,23366126,15080531,-7969992,7663473,},},
+};
+
+static const ge_precomp b_comb_high[8] = {
+ {{33055887,-4431773,-521787,6654165,951411,
+ -6266464,-5158124,6995613,-5397442,-6985227,},
+ {4014062,6967095,-11977872,3960002,8001989,
+ 5130302,-2154812,-1899602,-31954493,-16173976,},
+ {16271757,-9212948,23792794,731486,-25808309,
+ -3546396,6964344,-4767590,10976593,10050757,},},
+ {{2533007,-4288439,-24467768,-12387405,-13450051,
+ 14542280,12876301,13893535,15067764,8594792,},
+ {20073501,-11623621,3165391,-13119866,13188608,
+ -11540496,-10751437,-13482671,29588810,2197295,},
+ {-1084082,11831693,6031797,14062724,14748428,
+ -8159962,-20721760,11742548,31368706,13161200,},},
+ {{2050412,-6457589,15321215,5273360,25484180,
+ 124590,-18187548,-7097255,-6691621,-14604792,},
+ {9938196,2162889,-6158074,-1711248,4278932,
+ -2598531,-22865792,-7168500,-24323168,11746309,},
+ {-22691768,-14268164,5965485,9383325,20443693,
+ 5854192,28250679,-1381811,-10837134,13717818,},},
+ {{-8495530,16382250,9548884,-4971523,-4491811,
+ -3902147,6182256,-12832479,26628081,10395408,},
+ {27329048,-15853735,7715764,8717446,-9215518,
+ -14633480,28982250,-5668414,4227628,242148,},
+ {-13279943,-7986904,-7100016,8764468,-27276630,
+ 3096719,29678419,-9141299,3906709,11265498,},},
+ {{11918285,15686328,-17757323,-11217300,-27548967,
+ 4853165,-27168827,6807359,6871949,-1075745,},
+ {-29002610,13984323,-27111812,-2713442,28107359,
+ -13266203,6155126,15104658,3538727,-7513788,},
+ {14103158,11233913,-33165269,9279850,31014152,
+ 4335090,-1827936,4590951,13960841,12787712,},},
+ {{1469134,-16738009,33411928,13942824,8092558,
+ -8778224,-11165065,1437842,22521552,-2792954,},
+ {31352705,-4807352,-25327300,3962447,12541566,
+ -9399651,-27425693,7964818,-23829869,5541287,},
+ {-25732021,-6864887,23848984,3039395,-9147354,
+ 6022816,-27421653,10590137,25309915,-1584678,},},
+ {{-22951376,5048948,31139401,-190316,-19542447,
+ -626310,-17486305,-16511925,-18851313,-12985140,},
+ {-9684890,14681754,30487568,7717771,-10829709,
+ 9630497,30290549,-10531496,-27798994,-13812825,},
+ {5827835,16097107,-24501327,12094619,7413972,
+ 11447087,28057551,-1793987,-14056981,4359312,},},
+ {{26323183,2342588,-21887793,-1623758,-6062284,
+ 2107090,-28724907,9036464,-19618351,-13055189,},
+ {-29697200,14829398,-4596333,14220089,-30022969,
+ 2955645,12094100,-13693652,-5941445,7047569,},
+ {-3201977,14413268,-12058324,-16417589,-9035655,
+ -7224648,9258160,1399236,30397584,-5684634,},},
+};
+
+static void lookup_add(ge *p, ge_precomp *tmp_c, fe tmp_a, fe tmp_b,
+ const ge_precomp comb[8], const u8 scalar[32], int i)
+{
+ u8 teeth = (u8)((scalar_bit(scalar, i) ) +
+ (scalar_bit(scalar, i + 32) << 1) +
+ (scalar_bit(scalar, i + 64) << 2) +
+ (scalar_bit(scalar, i + 96) << 3));
+ u8 high = teeth >> 3;
+ u8 index = (teeth ^ (high - 1)) & 7;
+ FOR (j, 0, 8) {
+ i32 select = 1 & (((j ^ index) - 1) >> 8);
+ fe_ccopy(tmp_c->Yp, comb[j].Yp, select);
+ fe_ccopy(tmp_c->Ym, comb[j].Ym, select);
+ fe_ccopy(tmp_c->T2, comb[j].T2, select);
+ }
+ fe_neg(tmp_a, tmp_c->T2);
+ fe_cswap(tmp_c->T2, tmp_a , high ^ 1);
+ fe_cswap(tmp_c->Yp, tmp_c->Ym, high ^ 1);
+ ge_madd(p, p, tmp_c, tmp_a, tmp_b);
+}
+
+// p = [scalar]B, where B is the base point
+static void ge_scalarmult_base(ge *p, const u8 scalar[32])
+{
+ // twin 4-bits signed combs, from Mike Hamburg's
+ // Fast and compact elliptic-curve cryptography (2012)
+ // 1 / 2 modulo L
+ static const u8 half_mod_L[32] = {
+ 247,233,122,46,141,49,9,44,107,206,123,81,239,124,111,10,
+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8, };
+ // (2^256 - 1) / 2 modulo L
+ static const u8 half_ones[32] = {
+ 142,74,204,70,186,24,118,107,184,231,190,57,250,173,119,99,
+ 255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,7, };
+
+ // All bits set form: 1 means 1, 0 means -1
+ u8 s_scalar[32];
+ mul_add(s_scalar, scalar, half_mod_L, half_ones);
+
+ // Double and add ladder
+ fe tmp_a, tmp_b; // temporaries for addition
+ ge_precomp tmp_c; // temporary for comb lookup
+ ge tmp_d; // temporary for doubling
+ fe_1(tmp_c.Yp);
+ fe_1(tmp_c.Ym);
+ fe_0(tmp_c.T2);
+
+ // Save a double on the first iteration
+ ge_zero(p);
+ lookup_add(p, &tmp_c, tmp_a, tmp_b, b_comb_low , s_scalar, 31);
+ lookup_add(p, &tmp_c, tmp_a, tmp_b, b_comb_high, s_scalar, 31+128);
+ // Regular double & add for the rest
+ for (int i = 30; i >= 0; i--) {
+ ge_double(p, p, &tmp_d);
+ lookup_add(p, &tmp_c, tmp_a, tmp_b, b_comb_low , s_scalar, i);
+ lookup_add(p, &tmp_c, tmp_a, tmp_b, b_comb_high, s_scalar, i+128);
+ }
+ // Note: we could save one addition at the end if we assumed the
+ // scalar fit in 252 bits. Which it does in practice if it is
+ // selected at random. However, non-random, non-hashed scalars
+ // *can* overflow 252 bits in practice. Better account for that
+ // than leaving that kind of subtle corner case.
+
+ WIPE_BUFFER(tmp_a); WIPE_CTX(&tmp_d);
+ WIPE_BUFFER(tmp_b); WIPE_CTX(&tmp_c);
+ WIPE_BUFFER(s_scalar);
+}
+
+void crypto_sign_public_key_custom_hash(u8 public_key[32],
+ const u8 secret_key[32],
+ const crypto_sign_vtable *hash)
+{
+ u8 a[64];
+ hash->hash(a, secret_key, 32);
+ trim_scalar(a);
+ ge A;
+ ge_scalarmult_base(&A, a);
+ ge_tobytes(public_key, &A);
+ WIPE_BUFFER(a);
+ WIPE_CTX(&A);
+}
+
+void crypto_sign_public_key(u8 public_key[32], const u8 secret_key[32])
+{
+ crypto_sign_public_key_custom_hash(public_key, secret_key,
+ &crypto_blake2b_vtable);
+}
+
+void crypto_sign_init_first_pass_custom_hash(crypto_sign_ctx_abstract *ctx,
+ const u8 secret_key[32],
+ const u8 public_key[32],
+ const crypto_sign_vtable *hash)
+{
+ ctx->hash = hash; // set vtable
+ u8 *a = ctx->buf;
+ u8 *prefix = ctx->buf + 32;
+ ctx->hash->hash(a, secret_key, 32);
+ trim_scalar(a);
+
+ if (public_key == 0) {
+ crypto_sign_public_key_custom_hash(ctx->pk, secret_key, ctx->hash);
+ } else {
+ COPY(ctx->pk, public_key, 32);
+ }
+
+ // Deterministic part of EdDSA: Construct a nonce by hashing the message
+ // instead of generating a random number.
+ // An actual random number would work just fine, and would save us
+ // the trouble of hashing the message twice. If we did that
+ // however, the user could fuck it up and reuse the nonce.
+ ctx->hash->init (ctx);
+ ctx->hash->update(ctx, prefix , 32);
+}
+
+void crypto_sign_init_first_pass(crypto_sign_ctx_abstract *ctx,
+ const u8 secret_key[32],
+ const u8 public_key[32])
+{
+ crypto_sign_init_first_pass_custom_hash(ctx, secret_key, public_key,
+ &crypto_blake2b_vtable);
+}
+
+void crypto_sign_update(crypto_sign_ctx_abstract *ctx,
+ const u8 *msg, size_t msg_size)
+{
+ ctx->hash->update(ctx, msg, msg_size);
+}
+
+void crypto_sign_init_second_pass(crypto_sign_ctx_abstract *ctx)
+{
+ u8 *r = ctx->buf + 32;
+ u8 *half_sig = ctx->buf + 64;
+ ctx->hash->final(ctx, r);
+ reduce(r);
+
+ // first half of the signature = "random" nonce times the base point
+ ge R;
+ ge_scalarmult_base(&R, r);
+ ge_tobytes(half_sig, &R);
+ WIPE_CTX(&R);
+
+ // Hash R, the public key, and the message together.
+ // It cannot be done in parallel with the first hash.
+ ctx->hash->init (ctx);
+ ctx->hash->update(ctx, half_sig, 32);
+ ctx->hash->update(ctx, ctx->pk , 32);
+}
+
+void crypto_sign_final(crypto_sign_ctx_abstract *ctx, u8 signature[64])
+{
+ u8 *a = ctx->buf;
+ u8 *r = ctx->buf + 32;
+ u8 *half_sig = ctx->buf + 64;
+ u8 h_ram[64];
+ ctx->hash->final(ctx, h_ram);
+ reduce(h_ram);
+ COPY(signature, half_sig, 32);
+ mul_add(signature + 32, h_ram, a, r); // s = h_ram * a + r
+ WIPE_BUFFER(h_ram);
+ crypto_wipe(ctx, ctx->hash->ctx_size);
+}
+
+void crypto_sign(u8 signature[64],
+ const u8 secret_key[32],
+ const u8 public_key[32],
+ const u8 *message, size_t message_size)
+{
+ crypto_sign_ctx ctx;
+ crypto_sign_ctx_abstract *actx = (crypto_sign_ctx_abstract*)&ctx;
+ crypto_sign_init_first_pass (actx, secret_key, public_key);
+ crypto_sign_update (actx, message, message_size);
+ crypto_sign_init_second_pass(actx);
+ crypto_sign_update (actx, message, message_size);
+ crypto_sign_final (actx, signature);
+}
+
+void crypto_check_init_custom_hash(crypto_check_ctx_abstract *ctx,
+ const u8 signature[64],
+ const u8 public_key[32],
+ const crypto_sign_vtable *hash)
+{
+ ctx->hash = hash; // set vtable
+ COPY(ctx->buf, signature , 64);
+ COPY(ctx->pk , public_key, 32);
+ ctx->hash->init (ctx);
+ ctx->hash->update(ctx, signature , 32);
+ ctx->hash->update(ctx, public_key, 32);
+}
+
+void crypto_check_init(crypto_check_ctx_abstract *ctx, const u8 signature[64],
+ const u8 public_key[32])
+{
+ crypto_check_init_custom_hash(ctx, signature, public_key,
+ &crypto_blake2b_vtable);
+}
+
+void crypto_check_update(crypto_check_ctx_abstract *ctx,
+ const u8 *msg, size_t msg_size)
+{
+ ctx->hash->update(ctx, msg, msg_size);
+}
+
+int crypto_check_final(crypto_check_ctx_abstract *ctx)
+{
+ u8 *s = ctx->buf + 32; // s
+ u8 h_ram[64];
+ u32 s32[8]; // s (different encoding)
+ ge A;
+
+ ctx->hash->final(ctx, h_ram);
+ reduce(h_ram);
+ load32_le_buf(s32, s, 8);
+ if (ge_frombytes_neg_vartime(&A, ctx->pk) || // A = -pk
+ is_above_l(s32)) { // prevent s malleability
+ return -1;
+ }
+ ge_double_scalarmult_vartime(&A, h_ram, s); // A = [s]B - [h_ram]pk
+ ge_tobytes(ctx->pk, &A); // R_check = A
+ return crypto_verify32(ctx->buf, ctx->pk); // R == R_check ? OK : fail
+}
+
+int crypto_check(const u8 signature[64], const u8 public_key[32],
+ const u8 *message, size_t message_size)
+{
+ crypto_check_ctx ctx;
+ crypto_check_ctx_abstract *actx = (crypto_check_ctx_abstract*)&ctx;
+ crypto_check_init (actx, signature, public_key);
+ crypto_check_update(actx, message, message_size);
+ return crypto_check_final(actx);
+}
+
+///////////////////////
+/// EdDSA to X25519 ///
+///////////////////////
+void crypto_from_eddsa_private(u8 x25519[32], const u8 eddsa[32])
+{
+ u8 a[64];
+ crypto_blake2b(a, eddsa, 32);
+ COPY(x25519, a, 32);
+ WIPE_BUFFER(a);
+}
+
+void crypto_from_eddsa_public(u8 x25519[32], const u8 eddsa[32])
+{
+ fe t1, t2;
+ fe_frombytes(t2, eddsa);
+ fe_add(t1, fe_one, t2);
+ fe_sub(t2, fe_one, t2);
+ fe_invert(t2, t2);
+ fe_mul(t1, t1, t2);
+ fe_tobytes(x25519, t1);
+ WIPE_BUFFER(t1);
+ WIPE_BUFFER(t2);
+}
+
+/////////////////////////////////////////////
+/// Dirty ephemeral public key generation ///
+/////////////////////////////////////////////
+
+// Those functions generates a public key, *without* clearing the
+// cofactor. Sending that key over the network leaks 3 bits of the
+// private key. Use only to generate ephemeral keys that will be hidden
+// with crypto_curve_to_hidden().
+//
+// The public key is otherwise compatible with crypto_x25519() and
+// crypto_key_exchange() (those properly clear the cofactor).
+//
+// Note that the distribution of the resulting public keys is almost
+// uniform. Flipping the sign of the v coordinate (not provided by this
+// function), covers the entire key space almost perfectly, where
+// "almost" means a 2^-128 bias (undetectable). This uniformity is
+// needed to ensure the proper randomness of the resulting
+// representatives (once we apply crypto_curve_to_hidden()).
+//
+// Recall that Curve25519 has order C = 2^255 + e, with e < 2^128 (not
+// to be confused with the prime order of the main subgroup, L, which is
+// 8 times less than that).
+//
+// Generating all points would require us to multiply a point of order C
+// (the base point plus any point of order 8) by all scalars from 0 to
+// C-1. Clamping limits us to scalars between 2^254 and 2^255 - 1. But
+// by negating the resulting point at random, we also cover scalars from
+// -2^255 + 1 to -2^254 (which modulo C is congruent to e+1 to 2^254 + e).
+//
+// In practice:
+// - Scalars from 0 to e + 1 are never generated
+// - Scalars from 2^255 to 2^255 + e are never generated
+// - Scalars from 2^254 + 1 to 2^254 + e are generated twice
+//
+// Since e < 2^128, detecting this bias requires observing over 2^100
+// representatives from a given source (this will never happen), *and*
+// recovering enough of the private key to determine that they do, or do
+// not, belong to the biased set (this practically requires solving
+// discrete logarithm, which is conjecturally intractable).
+//
+// In practice, this means the bias is impossible to detect.
+
+// s + (x*L) % 8*L
+// Guaranteed to fit in 256 bits iff s fits in 255 bits.
+// L < 2^253
+// x%8 < 2^3
+// L * (x%8) < 2^255
+// s < 2^255
+// s + L * (x%8) < 2^256
+static void add_xl(u8 s[32], u8 x)
+{
+ u64 mod8 = x & 7;
+ u64 carry = 0;
+ FOR (i , 0, 8) {
+ carry = carry + load32_le(s + 4*i) + L[i] * mod8;
+ store32_le(s + 4*i, (u32)carry);
+ carry >>= 32;
+ }
+}
+
+// "Small" dirty ephemeral key.
+// Use if you need to shrink the size of the binary, and can afford to
+// slow down by a factor of two (compared to the fast version)
+//
+// This version works by decoupling the cofactor from the main factor.
+//
+// - The trimmed scalar determines the main factor
+// - The clamped bits of the scalar determine the cofactor.
+//
+// Cofactor and main factor are combined into a single scalar, which is
+// then multiplied by a point of order 8*L (unlike the base point, which
+// has prime order). That "dirty" base point is the addition of the
+// regular base point (9), and a point of order 8.
+void crypto_x25519_dirty_small(u8 public_key[32], const u8 secret_key[32])
+{
+ // Base point of order 8*L
+ // Raw scalar multiplication with it does not clear the cofactor,
+ // and the resulting public key will reveal 3 bits of the scalar.
+ //
+ // The low order component of this base point has been chosen
+ // to yield the same results as crypto_x25519_dirty_fast().
+ static const u8 dirty_base_point[32] = {
+ 0xd8, 0x86, 0x1a, 0xa2, 0x78, 0x7a, 0xd9, 0x26, 0x8b, 0x74, 0x74, 0xb6,
+ 0x82, 0xe3, 0xbe, 0xc3, 0xce, 0x36, 0x9a, 0x1e, 0x5e, 0x31, 0x47, 0xa2,
+ 0x6d, 0x37, 0x7c, 0xfd, 0x20, 0xb5, 0xdf, 0x75,
+ };
+ // separate the main factor & the cofactor of the scalar
+ u8 scalar[32];
+ COPY(scalar, secret_key, 32);
+ trim_scalar(scalar);
+
+ // Separate the main factor and the cofactor
+ //
+ // The scalar is trimmed, so its cofactor is cleared. The three
+ // least significant bits however still have a main factor. We must
+ // remove it for X25519 compatibility.
+ //
+ // cofactor = lsb * L (modulo 8*L)
+ // combined = scalar + cofactor (modulo 8*L)
+ add_xl(scalar, secret_key[0]);
+ scalarmult(public_key, scalar, dirty_base_point, 256);
+ WIPE_BUFFER(scalar);
+}
+
+// Select low order point
+// We're computing the [cofactor]lop scalar multiplication, where:
+//
+// cofactor = tweak & 7.
+// lop = (lop_x, lop_y)
+// lop_x = sqrt((sqrt(d + 1) + 1) / d)
+// lop_y = -lop_x * sqrtm1
+//
+// The low order point has order 8. There are 4 such points. We've
+// chosen the one whose both coordinates are positive (below p/2).
+// The 8 low order points are as follows:
+//
+// [0]lop = ( 0 , 1 )
+// [1]lop = ( lop_x , lop_y)
+// [2]lop = ( sqrt(-1), -0 )
+// [3]lop = ( lop_x , -lop_y)
+// [4]lop = (-0 , -1 )
+// [5]lop = (-lop_x , -lop_y)
+// [6]lop = (-sqrt(-1), 0 )
+// [7]lop = (-lop_x , lop_y)
+//
+// The x coordinate is either 0, sqrt(-1), lop_x, or their opposite.
+// The y coordinate is either 0, -1 , lop_y, or their opposite.
+// The pattern for both is the same, except for a rotation of 2 (modulo 8)
+//
+// This helper function captures the pattern, and we can use it thus:
+//
+// select_lop(x, lop_x, sqrtm1, cofactor);
+// select_lop(y, lop_y, fe_one, cofactor + 2);
+//
+// This is faster than an actual scalar multiplication,
+// and requires less code than naive constant time look up.
+static void select_lop(fe out, const fe x, const fe k, u8 cofactor)
+{
+ fe tmp;
+ fe_0(out);
+ fe_ccopy(out, k , (cofactor >> 1) & 1); // bit 1
+ fe_ccopy(out, x , (cofactor >> 0) & 1); // bit 0
+ fe_neg (tmp, out);
+ fe_ccopy(out, tmp, (cofactor >> 2) & 1); // bit 2
+ WIPE_BUFFER(tmp);
+}
+
+// "Fast" dirty ephemeral key
+// We use this one by default.
+//
+// This version works by performing a regular scalar multiplication,
+// then add a low order point. The scalar multiplication is done in
+// Edwards space for more speed (*2 compared to the "small" version).
+// The cost is a bigger binary for programs that don't also sign messages.
+void crypto_x25519_dirty_fast(u8 public_key[32], const u8 secret_key[32])
+{
+ // Compute clean scalar multiplication
+ u8 scalar[32];
+ ge pk;
+ COPY(scalar, secret_key, 32);
+ trim_scalar(scalar);
+ ge_scalarmult_base(&pk, scalar);
+
+ // Compute low order point
+ fe t1, t2;
+ select_lop(t1, lop_x, sqrtm1, secret_key[0]);
+ select_lop(t2, lop_y, fe_one, secret_key[0] + 2);
+ ge_precomp low_order_point;
+ fe_add(low_order_point.Yp, t2, t1);
+ fe_sub(low_order_point.Ym, t2, t1);
+ fe_mul(low_order_point.T2, t2, t1);
+ fe_mul(low_order_point.T2, low_order_point.T2, D2);
+
+ // Add low order point to the public key
+ ge_madd(&pk, &pk, &low_order_point, t1, t2);
+
+ // Convert to Montgomery u coordinate (we ignore the sign)
+ fe_add(t1, pk.Z, pk.Y);
+ fe_sub(t2, pk.Z, pk.Y);
+ fe_invert(t2, t2);
+ fe_mul(t1, t1, t2);
+
+ fe_tobytes(public_key, t1);
+
+ WIPE_BUFFER(t1); WIPE_CTX(&pk);
+ WIPE_BUFFER(t2); WIPE_CTX(&low_order_point);
+ WIPE_BUFFER(scalar);
+}
+
+///////////////////
+/// Elligator 2 ///
+///////////////////
+static const fe A = {486662};
+
+// Elligator direct map
+//
+// Computes the point corresponding to a representative, encoded in 32
+// bytes (little Endian). Since positive representatives fits in 254
+// bits, The two most significant bits are ignored.
+//
+// From the paper:
+// w = -A / (fe(1) + non_square * r^2)
+// e = chi(w^3 + A*w^2 + w)
+// u = e*w - (fe(1)-e)*(A//2)
+// v = -e * sqrt(u^3 + A*u^2 + u)
+//
+// We ignore v because we don't need it for X25519 (the Montgomery
+// ladder only uses u).
+//
+// Note that e is either 0, 1 or -1
+// if e = 0 u = 0 and v = 0
+// if e = 1 u = w
+// if e = -1 u = -w - A = w * non_square * r^2
+//
+// Let r1 = non_square * r^2
+// Let r2 = 1 + r1
+// Note that r2 cannot be zero, -1/non_square is not a square.
+// We can (tediously) verify that:
+// w^3 + A*w^2 + w = (A^2*r1 - r2^2) * A / r2^3
+// Therefore:
+// chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) * (A / r2^3))
+// chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) * (A / r2^3)) * 1
+// chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) * (A / r2^3)) * chi(r2^6)
+// chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) * (A / r2^3) * r2^6)
+// chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) * A * r2^3)
+// Corollary:
+// e = 1 if (A^2*r1 - r2^2) * A * r2^3) is a non-zero square
+// e = -1 if (A^2*r1 - r2^2) * A * r2^3) is not a square
+// Note that w^3 + A*w^2 + w (and therefore e) can never be zero:
+// w^3 + A*w^2 + w = w * (w^2 + A*w + 1)
+// w^3 + A*w^2 + w = w * (w^2 + A*w + A^2/4 - A^2/4 + 1)
+// w^3 + A*w^2 + w = w * (w + A/2)^2 - A^2/4 + 1)
+// which is zero only if:
+// w = 0 (impossible)
+// (w + A/2)^2 = A^2/4 - 1 (impossible, because A^2/4-1 is not a square)
+//
+// Let isr = invsqrt((A^2*r1 - r2^2) * A * r2^3)
+// isr = sqrt(1 / ((A^2*r1 - r2^2) * A * r2^3)) if e = 1
+// isr = sqrt(sqrt(-1) / ((A^2*r1 - r2^2) * A * r2^3)) if e = -1
+//
+// if e = 1
+// let u1 = -A * (A^2*r1 - r2^2) * A * r2^2 * isr^2
+// u1 = w
+// u1 = u
+//
+// if e = -1
+// let ufactor = -non_square * sqrt(-1) * r^2
+// let vfactor = sqrt(ufactor)
+// let u2 = -A * (A^2*r1 - r2^2) * A * r2^2 * isr^2 * ufactor
+// u2 = w * -1 * -non_square * r^2
+// u2 = w * non_square * r^2
+// u2 = u
+void crypto_hidden_to_curve(uint8_t curve[32], const uint8_t hidden[32])
+{
+ fe r, u, t1, t2, t3;
+ fe_frombytes_mask(r, hidden, 2); // r is encoded in 254 bits.
+ fe_sq(r, r);
+ fe_add(t1, r, r);
+ fe_add(u, t1, fe_one);
+ fe_sq (t2, u);
+ fe_mul(t3, A2, t1);
+ fe_sub(t3, t3, t2);
+ fe_mul(t3, t3, A);
+ fe_mul(t1, t2, u);
+ fe_mul(t1, t3, t1);
+ int is_square = invsqrt(t1, t1);
+ fe_mul(u, r, ufactor);
+ fe_ccopy(u, fe_one, is_square);
+ fe_sq (t1, t1);
+ fe_mul(u, u, A);
+ fe_mul(u, u, t3);
+ fe_mul(u, u, t2);
+ fe_mul(u, u, t1);
+ fe_neg(u, u);
+ fe_tobytes(curve, u);
+
+ WIPE_BUFFER(t1); WIPE_BUFFER(r);
+ WIPE_BUFFER(t2); WIPE_BUFFER(u);
+ WIPE_BUFFER(t3);
+}
+
+// Elligator inverse map
+//
+// Computes the representative of a point, if possible. If not, it does
+// nothing and returns -1. Note that the success of the operation
+// depends only on the point (more precisely its u coordinate). The
+// tweak parameter is used only upon success
+//
+// The tweak should be a random byte. Beyond that, its contents are an
+// implementation detail. Currently, the tweak comprises:
+// - Bit 1 : sign of the v coordinate (0 if positive, 1 if negative)
+// - Bit 2-5: not used
+// - Bits 6-7: random padding
+//
+// From the paper:
+// Let sq = -non_square * u * (u+A)
+// if sq is not a square, or u = -A, there is no mapping
+// Assuming there is a mapping:
+// if v is positive: r = sqrt(-u / (non_square * (u+A)))
+// if v is negative: r = sqrt(-(u+A) / (non_square * u ))
+//
+// We compute isr = invsqrt(-non_square * u * (u+A))
+// if it wasn't a square, abort.
+// else, isr = sqrt(-1 / (non_square * u * (u+A))
+//
+// If v is positive, we return isr * u:
+// isr * u = sqrt(-1 / (non_square * u * (u+A)) * u
+// isr * u = sqrt(-u / (non_square * (u+A))
+//
+// If v is negative, we return isr * (u+A):
+// isr * (u+A) = sqrt(-1 / (non_square * u * (u+A)) * (u+A)
+// isr * (u+A) = sqrt(-(u+A) / (non_square * u)
+int crypto_curve_to_hidden(u8 hidden[32], const u8 public_key[32], u8 tweak)
+{
+ fe t1, t2, t3;
+ fe_frombytes(t1, public_key); // t1 = u
+
+ fe_add(t2, t1, A); // t2 = u + A
+ fe_mul(t3, t1, t2);
+ fe_mul_small(t3, t3, -2);
+ int is_square = invsqrt(t3, t3); // t3 = sqrt(-1 / non_square * u * (u+A))
+ if (is_square) {
+ // The only variable time bit. This ultimately reveals how many
+ // tries it took us to find a representable key.
+ // This does not affect security as long as we try keys at random.
+
+ fe_ccopy (t1, t2, tweak & 1); // multiply by u if v is positive,
+ fe_mul (t3, t1, t3); // multiply by u+A otherwise
+ fe_mul_small(t1, t3, 2);
+ fe_neg (t2, t3);
+ fe_ccopy (t3, t2, fe_isodd(t1));
+ fe_tobytes(hidden, t3);
+
+ // Pad with two random bits
+ hidden[31] |= tweak & 0xc0;
+ }
+
+ WIPE_BUFFER(t1);
+ WIPE_BUFFER(t2);
+ WIPE_BUFFER(t3);
+ return is_square - 1;
+}
+
+void crypto_hidden_key_pair(u8 hidden[32], u8 secret_key[32], u8 seed[32])
+{
+ u8 pk [32]; // public key
+ u8 buf[64]; // seed + representative
+ COPY(buf + 32, seed, 32);
+ do {
+ crypto_chacha20(buf, 0, 64, buf+32, zero);
+ crypto_x25519_dirty_fast(pk, buf); // or the "small" version
+ } while(crypto_curve_to_hidden(buf+32, pk, buf[32]));
+ // Note that the return value of crypto_curve_to_hidden() is
+ // independent from its tweak parameter.
+ // Therefore, buf[32] is not actually reused. Either we loop one
+ // more time and buf[32] is used for the new seed, or we succeeded,
+ // and buf[32] becomes the tweak parameter.
+
+ crypto_wipe(seed, 32);
+ COPY(hidden , buf + 32, 32);
+ COPY(secret_key, buf , 32);
+ WIPE_BUFFER(buf);
+ WIPE_BUFFER(pk);
+}
+
+////////////////////
+/// Key exchange ///
+////////////////////
+void crypto_key_exchange(u8 shared_key[32],
+ const u8 your_secret_key [32],
+ const u8 their_public_key[32])
+{
+ crypto_x25519(shared_key, your_secret_key, their_public_key);
+ crypto_hchacha20(shared_key, shared_key, zero);
+}
+
+///////////////////////
+/// Scalar division ///
+///////////////////////
+
+// Montgomery reduction.
+// Divides x by (2^256), and reduces the result modulo L
+//
+// Precondition:
+// x < L * 2^256
+// Constants:
+// r = 2^256 (makes division by r trivial)
+// k = (r * (1/r) - 1) // L (1/r is computed modulo L )
+// Algorithm:
+// s = (x * k) % r
+// t = x + s*L (t is always a multiple of r)
+// u = (t/r) % L (u is always below 2*L, conditional subtraction is enough)
+static void redc(u32 u[8], u32 x[16])
+{
+ static const u32 k[8] = { 0x12547e1b, 0xd2b51da3, 0xfdba84ff, 0xb1a206f2,
+ 0xffa36bea, 0x14e75438, 0x6fe91836, 0x9db6c6f2, };
+
+ // s = x * k (modulo 2^256)
+ // This is cheaper than the full multiplication.
+ u32 s[8] = {0};
+ FOR (i, 0, 8) {
+ u64 carry = 0;
+ FOR (j, 0, 8-i) {
+ carry += s[i+j] + (u64)x[i] * k[j];
+ s[i+j] = (u32)carry;
+ carry >>= 32;
+ }
+ }
+ u32 t[16] = {0};
+ multiply(t, s, L);
+
+ // t = t + x
+ u64 carry = 0;
+ FOR (i, 0, 16) {
+ carry += (u64)t[i] + x[i];
+ t[i] = (u32)carry;
+ carry >>= 32;
+ }
+
+ // u = (t / 2^256) % L
+ // Note that t / 2^256 is always below 2*L,
+ // So a constant time conditional subtraction is enough
+ remove_l(u, t+8);
+
+ WIPE_BUFFER(s);
+ WIPE_BUFFER(t);
+}
+
+void crypto_x25519_inverse(u8 blind_salt [32], const u8 private_key[32],
+ const u8 curve_point[32])
+{
+ static const u8 Lm2[32] = { // L - 2
+ 0xeb, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58, 0xd6, 0x9c, 0xf7, 0xa2,
+ 0xde, 0xf9, 0xde, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, };
+ // 1 in Montgomery form
+ u32 m_inv [8] = {0x8d98951d, 0xd6ec3174, 0x737dcf70, 0xc6ef5bf4,
+ 0xfffffffe, 0xffffffff, 0xffffffff, 0x0fffffff,};
+
+ u8 scalar[32];
+ COPY(scalar, private_key, 32);
+ trim_scalar(scalar);
+
+ // Convert the scalar in Montgomery form
+ // m_scl = scalar * 2^256 (modulo L)
+ u32 m_scl[8];
+ {
+ u32 tmp[16];
+ ZERO(tmp, 8);
+ load32_le_buf(tmp+8, scalar, 8);
+ mod_l(scalar, tmp);
+ load32_le_buf(m_scl, scalar, 8);
+ WIPE_BUFFER(tmp); // Wipe ASAP to save stack space
+ }
+
+ // Compute the inverse
+ u32 product[16];
+ for (int i = 252; i >= 0; i--) {
+ ZERO(product, 16);
+ multiply(product, m_inv, m_inv);
+ redc(m_inv, product);
+ if (scalar_bit(Lm2, i)) {
+ ZERO(product, 16);
+ multiply(product, m_inv, m_scl);
+ redc(m_inv, product);
+ }
+ }
+ // Convert the inverse *out* of Montgomery form
+ // scalar = m_inv / 2^256 (modulo L)
+ COPY(product, m_inv, 8);
+ ZERO(product + 8, 8);
+ redc(m_inv, product);
+ store32_le_buf(scalar, m_inv, 8); // the *inverse* of the scalar
+
+ // Clear the cofactor of scalar:
+ // cleared = scalar * (3*L + 1) (modulo 8*L)
+ // cleared = scalar + scalar * 3 * L (modulo 8*L)
+ // Note that (scalar * 3) is reduced modulo 8, so we only need the
+ // first byte.
+ add_xl(scalar, scalar[0] * 3);
+
+ // Recall that 8*L < 2^256. However it is also very close to
+ // 2^255. If we spanned the ladder over 255 bits, random tests
+ // wouldn't catch the off-by-one error.
+ scalarmult(blind_salt, scalar, curve_point, 256);
+
+ WIPE_BUFFER(scalar); WIPE_BUFFER(m_scl);
+ WIPE_BUFFER(product); WIPE_BUFFER(m_inv);
+}
+
+////////////////////////////////
+/// Authenticated encryption ///
+////////////////////////////////
+static void lock_auth(u8 mac[16], const u8 auth_key[32],
+ const u8 *ad , size_t ad_size,
+ const u8 *cipher_text, size_t text_size)
+{
+ u8 sizes[16]; // Not secret, not wiped
+ store64_le(sizes + 0, ad_size);
+ store64_le(sizes + 8, text_size);
+ crypto_poly1305_ctx poly_ctx; // auto wiped...
+ crypto_poly1305_init (&poly_ctx, auth_key);
+ crypto_poly1305_update(&poly_ctx, ad , ad_size);
+ crypto_poly1305_update(&poly_ctx, zero , align(ad_size, 16));
+ crypto_poly1305_update(&poly_ctx, cipher_text, text_size);
+ crypto_poly1305_update(&poly_ctx, zero , align(text_size, 16));
+ crypto_poly1305_update(&poly_ctx, sizes , 16);
+ crypto_poly1305_final (&poly_ctx, mac); // ...here
+}
+
+void crypto_lock_aead(u8 mac[16], u8 *cipher_text,
+ const u8 key[32], const u8 nonce[24],
+ const u8 *ad , size_t ad_size,
+ const u8 *plain_text, size_t text_size)
+{
+ u8 sub_key[32];
+ u8 auth_key[64]; // "Wasting" the whole Chacha block is faster
+ crypto_hchacha20(sub_key, key, nonce);
+ crypto_chacha20(auth_key, 0, 64, sub_key, nonce + 16);
+ crypto_chacha20_ctr(cipher_text, plain_text, text_size,
+ sub_key, nonce + 16, 1);
+ lock_auth(mac, auth_key, ad, ad_size, cipher_text, text_size);
+ WIPE_BUFFER(sub_key);
+ WIPE_BUFFER(auth_key);
+}
+
+int crypto_unlock_aead(u8 *plain_text, const u8 key[32], const u8 nonce[24],
+ const u8 mac[16],
+ const u8 *ad , size_t ad_size,
+ const u8 *cipher_text, size_t text_size)
+{
+ u8 sub_key[32];
+ u8 auth_key[64]; // "Wasting" the whole Chacha block is faster
+ crypto_hchacha20(sub_key, key, nonce);
+ crypto_chacha20(auth_key, 0, 64, sub_key, nonce + 16);
+ u8 real_mac[16];
+ lock_auth(real_mac, auth_key, ad, ad_size, cipher_text, text_size);
+ WIPE_BUFFER(auth_key);
+ int mismatch = crypto_verify16(mac, real_mac);
+ if (!mismatch) {
+ crypto_chacha20_ctr(plain_text, cipher_text, text_size,
+ sub_key, nonce + 16, 1);
+ }
+ WIPE_BUFFER(sub_key);
+ WIPE_BUFFER(real_mac);
+ return mismatch;
+}
+
+void crypto_lock(u8 mac[16], u8 *cipher_text,
+ const u8 key[32], const u8 nonce[24],
+ const u8 *plain_text, size_t text_size)
+{
+ crypto_lock_aead(mac, cipher_text, key, nonce, 0, 0, plain_text, text_size);
+}
+
+int crypto_unlock(u8 *plain_text,
+ const u8 key[32], const u8 nonce[24], const u8 mac[16],
+ const u8 *cipher_text, size_t text_size)
+{
+ return crypto_unlock_aead(plain_text, key, nonce, mac, 0, 0,
+ cipher_text, text_size);
+}
+
+#ifdef MONOCYPHER_CPP_NAMESPACE
+}
+#endif