diff options
author | Michael Smith <mikesmiffy128@gmail.com> | 2022-07-31 16:01:26 +0100 |
---|---|---|
committer | Michael Smith <mikesmiffy128@gmail.com> | 2022-08-16 22:52:47 +0100 |
commit | 9f12b8d3a30fc9137d6707dcc513de30022ffe3e (patch) | |
tree | 3071a80c9d69298746ed74afc32823a72feeec4a /src/3p/monocypher | |
parent | 3380c56176a050cdf13b7a4b2ee8b0ba8c63b62b (diff) |
Import Monocypher 3.1.3 + monocypher-rng module
This is for somewhat later. I'd always planned to use it - it existed
already in earlier private repos, in fact. I just didn't bother to
import it here in case it wouldn't actually be needed, but with the way
current plans are going, it's definitely going to be needed, so here it
is.
Diffstat (limited to 'src/3p/monocypher')
-rw-r--r-- | src/3p/monocypher/monocypher-rng.c | 97 | ||||
-rw-r--r-- | src/3p/monocypher/monocypher-rng.h | 67 | ||||
-rw-r--r-- | src/3p/monocypher/monocypher.c | 2958 | ||||
-rw-r--r-- | src/3p/monocypher/monocypher.h | 384 |
4 files changed, 3506 insertions, 0 deletions
diff --git a/src/3p/monocypher/monocypher-rng.c b/src/3p/monocypher/monocypher-rng.c new file mode 100644 index 0000000..d59fc76 --- /dev/null +++ b/src/3p/monocypher/monocypher-rng.c @@ -0,0 +1,97 @@ +// This file is dual-licensed. Choose whichever licence you want from +// the two licences listed below. +// +// The first licence is a regular 2-clause BSD licence. The second licence +// is the CC-0 from Creative Commons. It is intended to release Monocypher +// to the public domain. The BSD licence serves as a fallback option. +// +// SPDX-License-Identifier: BSD-2-Clause OR CC0-1.0 +// +// ------------------------------------------------------------------------ +// +// Copyright (c) 2019-2021, Loup Vaillant +// All rights reserved. +// +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// 1. Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// +// 2. Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the +// distribution. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// ------------------------------------------------------------------------ +// +// Written in 2019-2021 by Loup Vaillant +// +// To the extent possible under law, the author(s) have dedicated all copyright +// and related neighboring rights to this software to the public domain +// worldwide. This software is distributed without any warranty. +// +// You should have received a copy of the CC0 Public Domain Dedication along +// with this software. If not, see +// <https://creativecommons.org/publicdomain/zero/1.0/> + +#include "monocypher-rng.h" +#include "monocypher.h" + +// avoid memcpy dependency (the compiler will likely use memcpy anyway) +static void copy(uint8_t *out, uint8_t *in, size_t size) +{ + for (size_t i = 0; i < size; i++) { + out[i] = in[i]; + } +} + +// mike: HACK: for single translation unit crypto.c, there's already zero[128] +// in monocypher.c, so leave this out! +//static const uint8_t zero[8] = {0}; + +void crypto_rng_init(crypto_rng_ctx *ctx, uint8_t random_seed[32]) +{ + copy(ctx->pool, random_seed, 32); + ctx->idx = 512; + crypto_wipe(random_seed, 32); +} + +void crypto_rng_read(crypto_rng_ctx *ctx, uint8_t *buf, size_t size) +{ + size_t pool_size = 512 - ctx->idx; + while (size > pool_size) { + copy(buf, ctx->pool + ctx->idx, pool_size); + crypto_chacha20(ctx->pool, 0, 512, ctx->pool, zero); + size -= pool_size; + buf += pool_size; + ctx->idx = 32; + pool_size = 512 - 32; + } + copy(buf, ctx->pool + ctx->idx, size); + ctx->idx += size; + + // Wipe used bytes ASAP (even if they'll be erased later) + crypto_wipe(ctx->pool + 32, ctx->idx - 32); +} + +void crypto_rng_fork(crypto_rng_ctx *ctx, crypto_rng_ctx *child_ctx) +{ + uint8_t child_seed[32]; // wiped by crypto_rng_init; + crypto_rng_read(ctx, child_seed, 32); + crypto_rng_init(child_ctx, child_seed); +} diff --git a/src/3p/monocypher/monocypher-rng.h b/src/3p/monocypher/monocypher-rng.h new file mode 100644 index 0000000..22b953c --- /dev/null +++ b/src/3p/monocypher/monocypher-rng.h @@ -0,0 +1,67 @@ +// This file is dual-licensed. Choose whichever licence you want from +// the two licences listed below. +// +// The first licence is a regular 2-clause BSD licence. The second licence +// is the CC-0 from Creative Commons. It is intended to release Monocypher +// to the public domain. The BSD licence serves as a fallback option. +// +// SPDX-License-Identifier: BSD-2-Clause OR CC0-1.0 +// +// ------------------------------------------------------------------------ +// +// Copyright (c) 2019, Loup Vaillant +// All rights reserved. +// +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// 1. Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// +// 2. Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the +// distribution. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// ------------------------------------------------------------------------ +// +// Written in 2017-2019 by Loup Vaillant +// +// To the extent possible under law, the author(s) have dedicated all copyright +// and related neighboring rights to this software to the public domain +// worldwide. This software is distributed without any warranty. +// +// You should have received a copy of the CC0 Public Domain Dedication along +// with this software. If not, see +// <https://creativecommons.org/publicdomain/zero/1.0/> + +#ifndef CRYPTO_RNG +#define CRYPTO_RNG + +#include <stddef.h> +#include <stdint.h> + +typedef struct { + uint8_t pool[512]; + size_t idx; +} crypto_rng_ctx; + +void crypto_rng_init(crypto_rng_ctx *ctx, uint8_t random_seed[32]); +void crypto_rng_read(crypto_rng_ctx *ctx, uint8_t *buf, size_t size); +void crypto_rng_fork(crypto_rng_ctx *ctx, crypto_rng_ctx *child_ctx); + +#endif // CRYPTO_RNG diff --git a/src/3p/monocypher/monocypher.c b/src/3p/monocypher/monocypher.c new file mode 100644 index 0000000..bd73306 --- /dev/null +++ b/src/3p/monocypher/monocypher.c @@ -0,0 +1,2958 @@ +// Monocypher version 3.1.3 +// +// This file is dual-licensed. Choose whichever licence you want from +// the two licences listed below. +// +// The first licence is a regular 2-clause BSD licence. The second licence +// is the CC-0 from Creative Commons. It is intended to release Monocypher +// to the public domain. The BSD licence serves as a fallback option. +// +// SPDX-License-Identifier: BSD-2-Clause OR CC0-1.0 +// +// ------------------------------------------------------------------------ +// +// Copyright (c) 2017-2020, Loup Vaillant +// All rights reserved. +// +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// 1. Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// +// 2. Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the +// distribution. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// ------------------------------------------------------------------------ +// +// Written in 2017-2020 by Loup Vaillant +// +// To the extent possible under law, the author(s) have dedicated all copyright +// and related neighboring rights to this software to the public domain +// worldwide. This software is distributed without any warranty. +// +// You should have received a copy of the CC0 Public Domain Dedication along +// with this software. If not, see +// <https://creativecommons.org/publicdomain/zero/1.0/> + +#include "monocypher.h" + +#ifdef MONOCYPHER_CPP_NAMESPACE +namespace MONOCYPHER_CPP_NAMESPACE { +#endif + +///////////////// +/// Utilities /// +///////////////// +#define FOR_T(type, i, start, end) for (type i = (start); i < (end); i++) +#define FOR(i, start, end) FOR_T(size_t, i, start, end) +#define COPY(dst, src, size) FOR(i__, 0, size) (dst)[i__] = (src)[i__] +#define ZERO(buf, size) FOR(i__, 0, size) (buf)[i__] = 0 +#define WIPE_CTX(ctx) crypto_wipe(ctx , sizeof(*(ctx))) +#define WIPE_BUFFER(buffer) crypto_wipe(buffer, sizeof(buffer)) +#define MIN(a, b) ((a) <= (b) ? (a) : (b)) +#define MAX(a, b) ((a) >= (b) ? (a) : (b)) + +typedef int8_t i8; +typedef uint8_t u8; +typedef int16_t i16; +typedef uint32_t u32; +typedef int32_t i32; +typedef int64_t i64; +typedef uint64_t u64; + +static const u8 zero[128] = {0}; + +// returns the smallest positive integer y such that +// (x + y) % pow_2 == 0 +// Basically, it's how many bytes we need to add to "align" x. +// Only works when pow_2 is a power of 2. +// Note: we use ~x+1 instead of -x to avoid compiler warnings +static size_t align(size_t x, size_t pow_2) +{ + return (~x + 1) & (pow_2 - 1); +} + +static u32 load24_le(const u8 s[3]) +{ + return (u32)s[0] + | ((u32)s[1] << 8) + | ((u32)s[2] << 16); +} + +static u32 load32_le(const u8 s[4]) +{ + return (u32)s[0] + | ((u32)s[1] << 8) + | ((u32)s[2] << 16) + | ((u32)s[3] << 24); +} + +static u64 load64_le(const u8 s[8]) +{ + return load32_le(s) | ((u64)load32_le(s+4) << 32); +} + +static void store32_le(u8 out[4], u32 in) +{ + out[0] = in & 0xff; + out[1] = (in >> 8) & 0xff; + out[2] = (in >> 16) & 0xff; + out[3] = (in >> 24) & 0xff; +} + +static void store64_le(u8 out[8], u64 in) +{ + store32_le(out , (u32)in ); + store32_le(out + 4, in >> 32); +} + +static void load32_le_buf (u32 *dst, const u8 *src, size_t size) { + FOR(i, 0, size) { dst[i] = load32_le(src + i*4); } +} +static void load64_le_buf (u64 *dst, const u8 *src, size_t size) { + FOR(i, 0, size) { dst[i] = load64_le(src + i*8); } +} +static void store32_le_buf(u8 *dst, const u32 *src, size_t size) { + FOR(i, 0, size) { store32_le(dst + i*4, src[i]); } +} +static void store64_le_buf(u8 *dst, const u64 *src, size_t size) { + FOR(i, 0, size) { store64_le(dst + i*8, src[i]); } +} + +static u64 rotr64(u64 x, u64 n) { return (x >> n) ^ (x << (64 - n)); } +static u32 rotl32(u32 x, u32 n) { return (x << n) ^ (x >> (32 - n)); } + +static int neq0(u64 diff) +{ // constant time comparison to zero + // return diff != 0 ? -1 : 0 + u64 half = (diff >> 32) | ((u32)diff); + return (1 & ((half - 1) >> 32)) - 1; +} + +static u64 x16(const u8 a[16], const u8 b[16]) +{ + return (load64_le(a + 0) ^ load64_le(b + 0)) + | (load64_le(a + 8) ^ load64_le(b + 8)); +} +static u64 x32(const u8 a[32],const u8 b[32]){return x16(a,b)| x16(a+16, b+16);} +static u64 x64(const u8 a[64],const u8 b[64]){return x32(a,b)| x32(a+32, b+32);} +int crypto_verify16(const u8 a[16], const u8 b[16]){ return neq0(x16(a, b)); } +int crypto_verify32(const u8 a[32], const u8 b[32]){ return neq0(x32(a, b)); } +int crypto_verify64(const u8 a[64], const u8 b[64]){ return neq0(x64(a, b)); } + +void crypto_wipe(void *secret, size_t size) +{ + volatile u8 *v_secret = (u8*)secret; + ZERO(v_secret, size); +} + +///////////////// +/// Chacha 20 /// +///////////////// +#define QUARTERROUND(a, b, c, d) \ + a += b; d = rotl32(d ^ a, 16); \ + c += d; b = rotl32(b ^ c, 12); \ + a += b; d = rotl32(d ^ a, 8); \ + c += d; b = rotl32(b ^ c, 7) + +static void chacha20_rounds(u32 out[16], const u32 in[16]) +{ + // The temporary variables make Chacha20 10% faster. + u32 t0 = in[ 0]; u32 t1 = in[ 1]; u32 t2 = in[ 2]; u32 t3 = in[ 3]; + u32 t4 = in[ 4]; u32 t5 = in[ 5]; u32 t6 = in[ 6]; u32 t7 = in[ 7]; + u32 t8 = in[ 8]; u32 t9 = in[ 9]; u32 t10 = in[10]; u32 t11 = in[11]; + u32 t12 = in[12]; u32 t13 = in[13]; u32 t14 = in[14]; u32 t15 = in[15]; + + FOR (i, 0, 10) { // 20 rounds, 2 rounds per loop. + QUARTERROUND(t0, t4, t8 , t12); // column 0 + QUARTERROUND(t1, t5, t9 , t13); // column 1 + QUARTERROUND(t2, t6, t10, t14); // column 2 + QUARTERROUND(t3, t7, t11, t15); // column 3 + QUARTERROUND(t0, t5, t10, t15); // diagonal 0 + QUARTERROUND(t1, t6, t11, t12); // diagonal 1 + QUARTERROUND(t2, t7, t8 , t13); // diagonal 2 + QUARTERROUND(t3, t4, t9 , t14); // diagonal 3 + } + out[ 0] = t0; out[ 1] = t1; out[ 2] = t2; out[ 3] = t3; + out[ 4] = t4; out[ 5] = t5; out[ 6] = t6; out[ 7] = t7; + out[ 8] = t8; out[ 9] = t9; out[10] = t10; out[11] = t11; + out[12] = t12; out[13] = t13; out[14] = t14; out[15] = t15; +} + +const u8 *chacha20_constant = (const u8*)"expand 32-byte k"; // 16 bytes + +void crypto_hchacha20(u8 out[32], const u8 key[32], const u8 in [16]) +{ + u32 block[16]; + load32_le_buf(block , chacha20_constant, 4); + load32_le_buf(block + 4, key , 8); + load32_le_buf(block + 12, in , 4); + + chacha20_rounds(block, block); + + // prevent reversal of the rounds by revealing only half of the buffer. + store32_le_buf(out , block , 4); // constant + store32_le_buf(out+16, block+12, 4); // counter and nonce + WIPE_BUFFER(block); +} + +u64 crypto_chacha20_ctr(u8 *cipher_text, const u8 *plain_text, + size_t text_size, const u8 key[32], const u8 nonce[8], + u64 ctr) +{ + u32 input[16]; + load32_le_buf(input , chacha20_constant, 4); + load32_le_buf(input + 4, key , 8); + load32_le_buf(input + 14, nonce , 2); + input[12] = (u32) ctr; + input[13] = (u32)(ctr >> 32); + + // Whole blocks + u32 pool[16]; + size_t nb_blocks = text_size >> 6; + FOR (i, 0, nb_blocks) { + chacha20_rounds(pool, input); + if (plain_text != 0) { + FOR (j, 0, 16) { + u32 p = pool[j] + input[j]; + store32_le(cipher_text, p ^ load32_le(plain_text)); + cipher_text += 4; + plain_text += 4; + } + } else { + FOR (j, 0, 16) { + u32 p = pool[j] + input[j]; + store32_le(cipher_text, p); + cipher_text += 4; + } + } + input[12]++; + if (input[12] == 0) { + input[13]++; + } + } + text_size &= 63; + + // Last (incomplete) block + if (text_size > 0) { + if (plain_text == 0) { + plain_text = zero; + } + chacha20_rounds(pool, input); + u8 tmp[64]; + FOR (i, 0, 16) { + store32_le(tmp + i*4, pool[i] + input[i]); + } + FOR (i, 0, text_size) { + cipher_text[i] = tmp[i] ^ plain_text[i]; + } + WIPE_BUFFER(tmp); + } + ctr = input[12] + ((u64)input[13] << 32) + (text_size > 0); + + WIPE_BUFFER(pool); + WIPE_BUFFER(input); + return ctr; +} + +u32 crypto_ietf_chacha20_ctr(u8 *cipher_text, const u8 *plain_text, + size_t text_size, + const u8 key[32], const u8 nonce[12], u32 ctr) +{ + u64 big_ctr = ctr + ((u64)load32_le(nonce) << 32); + return (u32)crypto_chacha20_ctr(cipher_text, plain_text, text_size, + key, nonce + 4, big_ctr); +} + +u64 crypto_xchacha20_ctr(u8 *cipher_text, const u8 *plain_text, + size_t text_size, + const u8 key[32], const u8 nonce[24], u64 ctr) +{ + u8 sub_key[32]; + crypto_hchacha20(sub_key, key, nonce); + ctr = crypto_chacha20_ctr(cipher_text, plain_text, text_size, + sub_key, nonce+16, ctr); + WIPE_BUFFER(sub_key); + return ctr; +} + +void crypto_chacha20(u8 *cipher_text, const u8 *plain_text, size_t text_size, + const u8 key[32], const u8 nonce[8]) +{ + crypto_chacha20_ctr(cipher_text, plain_text, text_size, key, nonce, 0); + +} +void crypto_ietf_chacha20(u8 *cipher_text, const u8 *plain_text, + size_t text_size, + const u8 key[32], const u8 nonce[12]) +{ + crypto_ietf_chacha20_ctr(cipher_text, plain_text, text_size, key, nonce, 0); +} + +void crypto_xchacha20(u8 *cipher_text, const u8 *plain_text, size_t text_size, + const u8 key[32], const u8 nonce[24]) +{ + crypto_xchacha20_ctr(cipher_text, plain_text, text_size, key, nonce, 0); +} + +///////////////// +/// Poly 1305 /// +///////////////// + +// h = (h + c) * r +// preconditions: +// ctx->h <= 4_ffffffff_ffffffff_ffffffff_ffffffff +// ctx->r <= 0ffffffc_0ffffffc_0ffffffc_0fffffff +// end <= 1 +// Postcondition: +// ctx->h <= 4_ffffffff_ffffffff_ffffffff_ffffffff +static void poly_block(crypto_poly1305_ctx *ctx, const u8 in[16], unsigned end) +{ + u32 s[4]; + load32_le_buf(s, in, 4); + + // s = h + c, without carry propagation + const u64 s0 = ctx->h[0] + (u64)s[0]; // s0 <= 1_fffffffe + const u64 s1 = ctx->h[1] + (u64)s[1]; // s1 <= 1_fffffffe + const u64 s2 = ctx->h[2] + (u64)s[2]; // s2 <= 1_fffffffe + const u64 s3 = ctx->h[3] + (u64)s[3]; // s3 <= 1_fffffffe + const u32 s4 = ctx->h[4] + end; // s4 <= 5 + + // Local all the things! + const u32 r0 = ctx->r[0]; // r0 <= 0fffffff + const u32 r1 = ctx->r[1]; // r1 <= 0ffffffc + const u32 r2 = ctx->r[2]; // r2 <= 0ffffffc + const u32 r3 = ctx->r[3]; // r3 <= 0ffffffc + const u32 rr0 = (r0 >> 2) * 5; // rr0 <= 13fffffb // lose 2 bits... + const u32 rr1 = (r1 >> 2) + r1; // rr1 <= 13fffffb // rr1 == (r1 >> 2) * 5 + const u32 rr2 = (r2 >> 2) + r2; // rr2 <= 13fffffb // rr1 == (r2 >> 2) * 5 + const u32 rr3 = (r3 >> 2) + r3; // rr3 <= 13fffffb // rr1 == (r3 >> 2) * 5 + + // (h + c) * r, without carry propagation + const u64 x0 = s0*r0+ s1*rr3+ s2*rr2+ s3*rr1+ s4*rr0; // <= 97ffffe007fffff8 + const u64 x1 = s0*r1+ s1*r0 + s2*rr3+ s3*rr2+ s4*rr1; // <= 8fffffe20ffffff6 + const u64 x2 = s0*r2+ s1*r1 + s2*r0 + s3*rr3+ s4*rr2; // <= 87ffffe417fffff4 + const u64 x3 = s0*r3+ s1*r2 + s2*r1 + s3*r0 + s4*rr3; // <= 7fffffe61ffffff2 + const u32 x4 = s4 * (r0 & 3); // ...recover 2 bits // <= f + + // partial reduction modulo 2^130 - 5 + const u32 u5 = x4 + (x3 >> 32); // u5 <= 7ffffff5 + const u64 u0 = (u5 >> 2) * 5 + (x0 & 0xffffffff); + const u64 u1 = (u0 >> 32) + (x1 & 0xffffffff) + (x0 >> 32); + const u64 u2 = (u1 >> 32) + (x2 & 0xffffffff) + (x1 >> 32); + const u64 u3 = (u2 >> 32) + (x3 & 0xffffffff) + (x2 >> 32); + const u64 u4 = (u3 >> 32) + (u5 & 3); + + // Update the hash + ctx->h[0] = (u32)u0; // u0 <= 1_9ffffff0 + ctx->h[1] = (u32)u1; // u1 <= 1_97ffffe0 + ctx->h[2] = (u32)u2; // u2 <= 1_8fffffe2 + ctx->h[3] = (u32)u3; // u3 <= 1_87ffffe4 + ctx->h[4] = (u32)u4; // u4 <= 4 +} + +void crypto_poly1305_init(crypto_poly1305_ctx *ctx, const u8 key[32]) +{ + ZERO(ctx->h, 5); // Initial hash is zero + ctx->c_idx = 0; + // load r and pad (r has some of its bits cleared) + load32_le_buf(ctx->r , key , 4); + load32_le_buf(ctx->pad, key+16, 4); + FOR (i, 0, 1) { ctx->r[i] &= 0x0fffffff; } + FOR (i, 1, 4) { ctx->r[i] &= 0x0ffffffc; } +} + +void crypto_poly1305_update(crypto_poly1305_ctx *ctx, + const u8 *message, size_t message_size) +{ + // Align ourselves with block boundaries + size_t aligned = MIN(align(ctx->c_idx, 16), message_size); + FOR (i, 0, aligned) { + ctx->c[ctx->c_idx] = *message; + ctx->c_idx++; + message++; + message_size--; + } + + // If block is complete, process it + if (ctx->c_idx == 16) { + poly_block(ctx, ctx->c, 1); + ctx->c_idx = 0; + } + + // Process the message block by block + size_t nb_blocks = message_size >> 4; + FOR (i, 0, nb_blocks) { + poly_block(ctx, message, 1); + message += 16; + } + message_size &= 15; + + // remaining bytes (we never complete a block here) + FOR (i, 0, message_size) { + ctx->c[ctx->c_idx] = message[i]; + ctx->c_idx++; + } +} + +void crypto_poly1305_final(crypto_poly1305_ctx *ctx, u8 mac[16]) +{ + // Process the last block (if any) + // We move the final 1 according to remaining input length + // (this will add less than 2^130 to the last input block) + if (ctx->c_idx != 0) { + ZERO(ctx->c + ctx->c_idx, 16 - ctx->c_idx); + ctx->c[ctx->c_idx] = 1; + poly_block(ctx, ctx->c, 0); + } + + // check if we should subtract 2^130-5 by performing the + // corresponding carry propagation. + u64 c = 5; + FOR (i, 0, 4) { + c += ctx->h[i]; + c >>= 32; + } + c += ctx->h[4]; + c = (c >> 2) * 5; // shift the carry back to the beginning + // c now indicates how many times we should subtract 2^130-5 (0 or 1) + FOR (i, 0, 4) { + c += (u64)ctx->h[i] + ctx->pad[i]; + store32_le(mac + i*4, (u32)c); + c = c >> 32; + } + WIPE_CTX(ctx); +} + +void crypto_poly1305(u8 mac[16], const u8 *message, + size_t message_size, const u8 key[32]) +{ + crypto_poly1305_ctx ctx; + crypto_poly1305_init (&ctx, key); + crypto_poly1305_update(&ctx, message, message_size); + crypto_poly1305_final (&ctx, mac); +} + +//////////////// +/// BLAKE2 b /// +//////////////// +static const u64 iv[8] = { + 0x6a09e667f3bcc908, 0xbb67ae8584caa73b, + 0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1, + 0x510e527fade682d1, 0x9b05688c2b3e6c1f, + 0x1f83d9abfb41bd6b, 0x5be0cd19137e2179, +}; + +static void blake2b_compress(crypto_blake2b_ctx *ctx, int is_last_block) +{ + static const u8 sigma[12][16] = { + { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, + { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, + { 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, + { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, + { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, + { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }, + { 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 }, + { 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 }, + { 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 }, + { 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 }, + { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, + { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, + }; + + // increment input offset + u64 *x = ctx->input_offset; + size_t y = ctx->input_idx; + x[0] += y; + if (x[0] < y) { + x[1]++; + } + + // init work vector + u64 v0 = ctx->hash[0]; u64 v8 = iv[0]; + u64 v1 = ctx->hash[1]; u64 v9 = iv[1]; + u64 v2 = ctx->hash[2]; u64 v10 = iv[2]; + u64 v3 = ctx->hash[3]; u64 v11 = iv[3]; + u64 v4 = ctx->hash[4]; u64 v12 = iv[4] ^ ctx->input_offset[0]; + u64 v5 = ctx->hash[5]; u64 v13 = iv[5] ^ ctx->input_offset[1]; + u64 v6 = ctx->hash[6]; u64 v14 = iv[6] ^ (u64)~(is_last_block - 1); + u64 v7 = ctx->hash[7]; u64 v15 = iv[7]; + + // mangle work vector + u64 *input = ctx->input; +#define BLAKE2_G(a, b, c, d, x, y) \ + a += b + x; d = rotr64(d ^ a, 32); \ + c += d; b = rotr64(b ^ c, 24); \ + a += b + y; d = rotr64(d ^ a, 16); \ + c += d; b = rotr64(b ^ c, 63) +#define BLAKE2_ROUND(i) \ + BLAKE2_G(v0, v4, v8 , v12, input[sigma[i][ 0]], input[sigma[i][ 1]]); \ + BLAKE2_G(v1, v5, v9 , v13, input[sigma[i][ 2]], input[sigma[i][ 3]]); \ + BLAKE2_G(v2, v6, v10, v14, input[sigma[i][ 4]], input[sigma[i][ 5]]); \ + BLAKE2_G(v3, v7, v11, v15, input[sigma[i][ 6]], input[sigma[i][ 7]]); \ + BLAKE2_G(v0, v5, v10, v15, input[sigma[i][ 8]], input[sigma[i][ 9]]); \ + BLAKE2_G(v1, v6, v11, v12, input[sigma[i][10]], input[sigma[i][11]]); \ + BLAKE2_G(v2, v7, v8 , v13, input[sigma[i][12]], input[sigma[i][13]]); \ + BLAKE2_G(v3, v4, v9 , v14, input[sigma[i][14]], input[sigma[i][15]]) + +#ifdef BLAKE2_NO_UNROLLING + FOR (i, 0, 12) { + BLAKE2_ROUND(i); + } +#else + BLAKE2_ROUND(0); BLAKE2_ROUND(1); BLAKE2_ROUND(2); BLAKE2_ROUND(3); + BLAKE2_ROUND(4); BLAKE2_ROUND(5); BLAKE2_ROUND(6); BLAKE2_ROUND(7); + BLAKE2_ROUND(8); BLAKE2_ROUND(9); BLAKE2_ROUND(10); BLAKE2_ROUND(11); +#endif + + // update hash + ctx->hash[0] ^= v0 ^ v8; ctx->hash[1] ^= v1 ^ v9; + ctx->hash[2] ^= v2 ^ v10; ctx->hash[3] ^= v3 ^ v11; + ctx->hash[4] ^= v4 ^ v12; ctx->hash[5] ^= v5 ^ v13; + ctx->hash[6] ^= v6 ^ v14; ctx->hash[7] ^= v7 ^ v15; +} + +static void blake2b_set_input(crypto_blake2b_ctx *ctx, u8 input, size_t index) +{ + if (index == 0) { + ZERO(ctx->input, 16); + } + size_t word = index >> 3; + size_t byte = index & 7; + ctx->input[word] |= (u64)input << (byte << 3); +} + +void crypto_blake2b_general_init(crypto_blake2b_ctx *ctx, size_t hash_size, + const u8 *key, size_t key_size) +{ + // initial hash + COPY(ctx->hash, iv, 8); + ctx->hash[0] ^= 0x01010000 ^ (key_size << 8) ^ hash_size; + + ctx->input_offset[0] = 0; // beginning of the input, no offset + ctx->input_offset[1] = 0; // beginning of the input, no offset + ctx->hash_size = hash_size; // remember the hash size we want + ctx->input_idx = 0; + + // if there is a key, the first block is that key (padded with zeroes) + if (key_size > 0) { + u8 key_block[128] = {0}; + COPY(key_block, key, key_size); + // same as calling crypto_blake2b_update(ctx, key_block , 128) + load64_le_buf(ctx->input, key_block, 16); + ctx->input_idx = 128; + } +} + +void crypto_blake2b_init(crypto_blake2b_ctx *ctx) +{ + crypto_blake2b_general_init(ctx, 64, 0, 0); +} + +void crypto_blake2b_update(crypto_blake2b_ctx *ctx, + const u8 *message, size_t message_size) +{ + // Align ourselves with block boundaries + // The block that may result is not compressed yet + size_t aligned = MIN(align(ctx->input_idx, 128), message_size); + FOR (i, 0, aligned) { + blake2b_set_input(ctx, *message, ctx->input_idx); + ctx->input_idx++; + message++; + message_size--; + } + + // Process the message block by block + // The last block is not compressed yet. + size_t nb_blocks = message_size >> 7; + FOR (i, 0, nb_blocks) { + if (ctx->input_idx == 128) { + blake2b_compress(ctx, 0); + } + load64_le_buf(ctx->input, message, 16); + message += 128; + ctx->input_idx = 128; + } + message_size &= 127; + + // Fill remaining bytes (not the whole buffer) + // The last block is never fully filled + FOR (i, 0, message_size) { + if (ctx->input_idx == 128) { + blake2b_compress(ctx, 0); + ctx->input_idx = 0; + } + blake2b_set_input(ctx, message[i], ctx->input_idx); + ctx->input_idx++; + } +} + +void crypto_blake2b_final(crypto_blake2b_ctx *ctx, u8 *hash) +{ + // Pad the end of the block with zeroes + FOR (i, ctx->input_idx, 128) { + blake2b_set_input(ctx, 0, i); + } + blake2b_compress(ctx, 1); // compress the last block + size_t nb_words = ctx->hash_size >> 3; + store64_le_buf(hash, ctx->hash, nb_words); + FOR (i, nb_words << 3, ctx->hash_size) { + hash[i] = (ctx->hash[i >> 3] >> (8 * (i & 7))) & 0xff; + } + WIPE_CTX(ctx); +} + +void crypto_blake2b_general(u8 *hash , size_t hash_size, + const u8 *key , size_t key_size, + const u8 *message, size_t message_size) +{ + crypto_blake2b_ctx ctx; + crypto_blake2b_general_init(&ctx, hash_size, key, key_size); + crypto_blake2b_update(&ctx, message, message_size); + crypto_blake2b_final(&ctx, hash); +} + +void crypto_blake2b(u8 hash[64], const u8 *message, size_t message_size) +{ + crypto_blake2b_general(hash, 64, 0, 0, message, message_size); +} + +static void blake2b_vtable_init(void *ctx) { + crypto_blake2b_init(&((crypto_sign_ctx*)ctx)->hash); +} +static void blake2b_vtable_update(void *ctx, const u8 *m, size_t s) { + crypto_blake2b_update(&((crypto_sign_ctx*)ctx)->hash, m, s); +} +static void blake2b_vtable_final(void *ctx, u8 *h) { + crypto_blake2b_final(&((crypto_sign_ctx*)ctx)->hash, h); +} +const crypto_sign_vtable crypto_blake2b_vtable = { + crypto_blake2b, + blake2b_vtable_init, + blake2b_vtable_update, + blake2b_vtable_final, + sizeof(crypto_sign_ctx), +}; + +//////////////// +/// Argon2 i /// +//////////////// +// references to R, Z, Q etc. come from the spec + +// Argon2 operates on 1024 byte blocks. +typedef struct { u64 a[128]; } block; + +static void wipe_block(block *b) +{ + volatile u64* a = b->a; + ZERO(a, 128); +} + +// updates a BLAKE2 hash with a 32 bit word, little endian. +static void blake_update_32(crypto_blake2b_ctx *ctx, u32 input) +{ + u8 buf[4]; + store32_le(buf, input); + crypto_blake2b_update(ctx, buf, 4); + WIPE_BUFFER(buf); +} + +static void load_block(block *b, const u8 bytes[1024]) +{ + load64_le_buf(b->a, bytes, 128); +} + +static void store_block(u8 bytes[1024], const block *b) +{ + store64_le_buf(bytes, b->a, 128); +} + +static void copy_block(block *o,const block*in){FOR(i,0,128)o->a[i] = in->a[i];} +static void xor_block(block *o,const block*in){FOR(i,0,128)o->a[i]^= in->a[i];} + +// Hash with a virtually unlimited digest size. +// Doesn't extract more entropy than the base hash function. +// Mainly used for filling a whole kilobyte block with pseudo-random bytes. +// (One could use a stream cipher with a seed hash as the key, but +// this would introduce another dependency —and point of failure.) +static void extended_hash(u8 *digest, u32 digest_size, + const u8 *input , u32 input_size) +{ + crypto_blake2b_ctx ctx; + crypto_blake2b_general_init(&ctx, MIN(digest_size, 64), 0, 0); + blake_update_32 (&ctx, digest_size); + crypto_blake2b_update (&ctx, input, input_size); + crypto_blake2b_final (&ctx, digest); + + if (digest_size > 64) { + // the conversion to u64 avoids integer overflow on + // ludicrously big hash sizes. + u32 r = (u32)(((u64)digest_size + 31) >> 5) - 2; + u32 i = 1; + u32 in = 0; + u32 out = 32; + while (i < r) { + // Input and output overlap. This is intentional + crypto_blake2b(digest + out, digest + in, 64); + i += 1; + in += 32; + out += 32; + } + crypto_blake2b_general(digest + out, digest_size - (32 * r), + 0, 0, // no key + digest + in , 64); + } +} + +#define LSB(x) ((x) & 0xffffffff) +#define G(a, b, c, d) \ + a += b + 2 * LSB(a) * LSB(b); d ^= a; d = rotr64(d, 32); \ + c += d + 2 * LSB(c) * LSB(d); b ^= c; b = rotr64(b, 24); \ + a += b + 2 * LSB(a) * LSB(b); d ^= a; d = rotr64(d, 16); \ + c += d + 2 * LSB(c) * LSB(d); b ^= c; b = rotr64(b, 63) +#define ROUND(v0, v1, v2, v3, v4, v5, v6, v7, \ + v8, v9, v10, v11, v12, v13, v14, v15) \ + G(v0, v4, v8, v12); G(v1, v5, v9, v13); \ + G(v2, v6, v10, v14); G(v3, v7, v11, v15); \ + G(v0, v5, v10, v15); G(v1, v6, v11, v12); \ + G(v2, v7, v8, v13); G(v3, v4, v9, v14) + +// Core of the compression function G. Computes Z from R in place. +static void g_rounds(block *work_block) +{ + // column rounds (work_block = Q) + for (int i = 0; i < 128; i += 16) { + ROUND(work_block->a[i ], work_block->a[i + 1], + work_block->a[i + 2], work_block->a[i + 3], + work_block->a[i + 4], work_block->a[i + 5], + work_block->a[i + 6], work_block->a[i + 7], + work_block->a[i + 8], work_block->a[i + 9], + work_block->a[i + 10], work_block->a[i + 11], + work_block->a[i + 12], work_block->a[i + 13], + work_block->a[i + 14], work_block->a[i + 15]); + } + // row rounds (work_block = Z) + for (int i = 0; i < 16; i += 2) { + ROUND(work_block->a[i ], work_block->a[i + 1], + work_block->a[i + 16], work_block->a[i + 17], + work_block->a[i + 32], work_block->a[i + 33], + work_block->a[i + 48], work_block->a[i + 49], + work_block->a[i + 64], work_block->a[i + 65], + work_block->a[i + 80], work_block->a[i + 81], + work_block->a[i + 96], work_block->a[i + 97], + work_block->a[i + 112], work_block->a[i + 113]); + } +} + +// Argon2i uses a kind of stream cipher to determine which reference +// block it will take to synthesise the next block. This context hold +// that stream's state. (It's very similar to Chacha20. The block b +// is analogous to Chacha's own pool) +typedef struct { + block b; + u32 pass_number; + u32 slice_number; + u32 nb_blocks; + u32 nb_iterations; + u32 ctr; + u32 offset; +} gidx_ctx; + +// The block in the context will determine array indices. To avoid +// timing attacks, it only depends on public information. No looking +// at a previous block to seed the next. This makes offline attacks +// easier, but timing attacks are the bigger threat in many settings. +static void gidx_refresh(gidx_ctx *ctx) +{ + // seed the beginning of the block... + ctx->b.a[0] = ctx->pass_number; + ctx->b.a[1] = 0; // lane number (we have only one) + ctx->b.a[2] = ctx->slice_number; + ctx->b.a[3] = ctx->nb_blocks; + ctx->b.a[4] = ctx->nb_iterations; + ctx->b.a[5] = 1; // type: Argon2i + ctx->b.a[6] = ctx->ctr; + ZERO(ctx->b.a + 7, 121); // ...then zero the rest out + + // Shuffle the block thus: ctx->b = G((G(ctx->b, zero)), zero) + // (G "square" function), to get cheap pseudo-random numbers. + block tmp; + copy_block(&tmp, &ctx->b); + g_rounds (&ctx->b); + xor_block (&ctx->b, &tmp); + copy_block(&tmp, &ctx->b); + g_rounds (&ctx->b); + xor_block (&ctx->b, &tmp); + wipe_block(&tmp); +} + +static void gidx_init(gidx_ctx *ctx, + u32 pass_number, u32 slice_number, + u32 nb_blocks, u32 nb_iterations) +{ + ctx->pass_number = pass_number; + ctx->slice_number = slice_number; + ctx->nb_blocks = nb_blocks; + ctx->nb_iterations = nb_iterations; + ctx->ctr = 0; + + // Offset from the beginning of the segment. For the first slice + // of the first pass, we start at the *third* block, so the offset + // starts at 2, not 0. + if (pass_number != 0 || slice_number != 0) { + ctx->offset = 0; + } else { + ctx->offset = 2; + ctx->ctr++; // Compensates for missed lazy creation + gidx_refresh(ctx); // at the start of gidx_next() + } +} + +static u32 gidx_next(gidx_ctx *ctx) +{ + // lazily creates the offset block we need + if ((ctx->offset & 127) == 0) { + ctx->ctr++; + gidx_refresh(ctx); + } + u32 index = ctx->offset & 127; // save index for current call + u32 offset = ctx->offset; // save offset for current call + ctx->offset++; // update offset for next call + + // Computes the area size. + // Pass 0 : all already finished segments plus already constructed + // blocks in this segment + // Pass 1+: 3 last segments plus already constructed + // blocks in this segment. THE SPEC SUGGESTS OTHERWISE. + // I CONFORM TO THE REFERENCE IMPLEMENTATION. + int first_pass = ctx->pass_number == 0; + u32 slice_size = ctx->nb_blocks >> 2; + u32 nb_segments = first_pass ? ctx->slice_number : 3; + u32 area_size = nb_segments * slice_size + offset - 1; + + // Computes the starting position of the reference area. + // CONTRARY TO WHAT THE SPEC SUGGESTS, IT STARTS AT THE + // NEXT SEGMENT, NOT THE NEXT BLOCK. + u32 next_slice = ((ctx->slice_number + 1) & 3) * slice_size; + u32 start_pos = first_pass ? 0 : next_slice; + + // Generate offset from J1 (no need for J2, there's only one lane) + u64 j1 = ctx->b.a[index] & 0xffffffff; // pseudo-random number + u64 x = (j1 * j1) >> 32; + u64 y = (area_size * x) >> 32; + u64 z = (area_size - 1) - y; + u64 ref = start_pos + z; // ref < 2 * nb_blocks + return (u32)(ref < ctx->nb_blocks ? ref : ref - ctx->nb_blocks); +} + +// Main algorithm +void crypto_argon2i_general(u8 *hash, u32 hash_size, + void *work_area, u32 nb_blocks, + u32 nb_iterations, + const u8 *password, u32 password_size, + const u8 *salt, u32 salt_size, + const u8 *key, u32 key_size, + const u8 *ad, u32 ad_size) +{ + // work area seen as blocks (must be suitably aligned) + block *blocks = (block*)work_area; + { + crypto_blake2b_ctx ctx; + crypto_blake2b_init(&ctx); + + blake_update_32 (&ctx, 1 ); // p: number of threads + blake_update_32 (&ctx, hash_size ); + blake_update_32 (&ctx, nb_blocks ); + blake_update_32 (&ctx, nb_iterations); + blake_update_32 (&ctx, 0x13 ); // v: version number + blake_update_32 (&ctx, 1 ); // y: Argon2i + blake_update_32 (&ctx, password_size); + crypto_blake2b_update(&ctx, password, password_size); + blake_update_32 (&ctx, salt_size); + crypto_blake2b_update(&ctx, salt, salt_size); + blake_update_32 (&ctx, key_size); + crypto_blake2b_update(&ctx, key, key_size); + blake_update_32 (&ctx, ad_size); + crypto_blake2b_update(&ctx, ad, ad_size); + + u8 initial_hash[72]; // 64 bytes plus 2 words for future hashes + crypto_blake2b_final(&ctx, initial_hash); + + // fill first 2 blocks + u8 hash_area[1024]; + store32_le(initial_hash + 64, 0); // first additional word + store32_le(initial_hash + 68, 0); // second additional word + extended_hash(hash_area, 1024, initial_hash, 72); + load_block(blocks, hash_area); + + store32_le(initial_hash + 64, 1); // slight modification + extended_hash(hash_area, 1024, initial_hash, 72); + load_block(blocks + 1, hash_area); + + WIPE_BUFFER(initial_hash); + WIPE_BUFFER(hash_area); + } + + // Actual number of blocks + nb_blocks -= nb_blocks & 3; // round down to 4 p (p == 1 thread) + const u32 segment_size = nb_blocks >> 2; + + // fill (then re-fill) the rest of the blocks + block tmp; + gidx_ctx ctx; // public information, no need to wipe + FOR_T (u32, pass_number, 0, nb_iterations) { + int first_pass = pass_number == 0; + + FOR_T (u32, segment, 0, 4) { + gidx_init(&ctx, pass_number, segment, nb_blocks, nb_iterations); + + // On the first segment of the first pass, + // blocks 0 and 1 are already filled. + // We use the offset to skip them. + u32 start_offset = first_pass && segment == 0 ? 2 : 0; + u32 segment_start = segment * segment_size + start_offset; + u32 segment_end = (segment + 1) * segment_size; + FOR_T (u32, current_block, segment_start, segment_end) { + block *reference = blocks + gidx_next(&ctx); + block *current = blocks + current_block; + block *previous = current_block == 0 + ? blocks + nb_blocks - 1 + : blocks + current_block - 1; + // Apply compression function G, + // And copy it (or XOR it) to the current block. + copy_block(&tmp, previous); + xor_block (&tmp, reference); + if (first_pass) { copy_block(current, &tmp); } + else { xor_block (current, &tmp); } + g_rounds (&tmp); + xor_block (current, &tmp); + } + } + } + wipe_block(&tmp); + u8 final_block[1024]; + store_block(final_block, blocks + (nb_blocks - 1)); + + // wipe work area + volatile u64 *p = (u64*)work_area; + ZERO(p, 128 * nb_blocks); + + // hash the very last block with H' into the output hash + extended_hash(hash, hash_size, final_block, 1024); + WIPE_BUFFER(final_block); +} + +void crypto_argon2i(u8 *hash, u32 hash_size, + void *work_area, u32 nb_blocks, u32 nb_iterations, + const u8 *password, u32 password_size, + const u8 *salt, u32 salt_size) +{ + crypto_argon2i_general(hash, hash_size, work_area, nb_blocks, nb_iterations, + password, password_size, salt , salt_size, 0,0,0,0); +} + +//////////////////////////////////// +/// Arithmetic modulo 2^255 - 19 /// +//////////////////////////////////// +// Originally taken from SUPERCOP's ref10 implementation. +// A bit bigger than TweetNaCl, over 4 times faster. + +// field element +typedef i32 fe[10]; + +// field constants +// +// fe_one : 1 +// sqrtm1 : sqrt(-1) +// d : -121665 / 121666 +// D2 : 2 * -121665 / 121666 +// lop_x, lop_y: low order point in Edwards coordinates +// ufactor : -sqrt(-1) * 2 +// A2 : 486662^2 (A squared) +static const fe fe_one = {1}; +static const fe sqrtm1 = {-32595792, -7943725, 9377950, 3500415, 12389472, + -272473, -25146209, -2005654, 326686, 11406482,}; +static const fe d = {-10913610, 13857413, -15372611, 6949391, 114729, + -8787816, -6275908, -3247719, -18696448, -12055116,}; +static const fe D2 = {-21827239, -5839606, -30745221, 13898782, 229458, + 15978800, -12551817, -6495438, 29715968, 9444199,}; +static const fe lop_x = {21352778, 5345713, 4660180, -8347857, 24143090, + 14568123, 30185756, -12247770, -33528939, 8345319,}; +static const fe lop_y = {-6952922, -1265500, 6862341, -7057498, -4037696, + -5447722, 31680899, -15325402, -19365852, 1569102,}; +static const fe ufactor = {-1917299, 15887451, -18755900, -7000830, -24778944, + 544946, -16816446, 4011309, -653372, 10741468,}; +static const fe A2 = {12721188, 3529, 0, 0, 0, 0, 0, 0, 0, 0,}; + +static void fe_0(fe h) { ZERO(h , 10); } +static void fe_1(fe h) { h[0] = 1; ZERO(h+1, 9); } + +static void fe_copy(fe h,const fe f ){FOR(i,0,10) h[i] = f[i]; } +static void fe_neg (fe h,const fe f ){FOR(i,0,10) h[i] = -f[i]; } +static void fe_add (fe h,const fe f,const fe g){FOR(i,0,10) h[i] = f[i] + g[i];} +static void fe_sub (fe h,const fe f,const fe g){FOR(i,0,10) h[i] = f[i] - g[i];} + +static void fe_cswap(fe f, fe g, int b) +{ + i32 mask = -b; // -1 = 0xffffffff + FOR (i, 0, 10) { + i32 x = (f[i] ^ g[i]) & mask; + f[i] = f[i] ^ x; + g[i] = g[i] ^ x; + } +} + +static void fe_ccopy(fe f, const fe g, int b) +{ + i32 mask = -b; // -1 = 0xffffffff + FOR (i, 0, 10) { + i32 x = (f[i] ^ g[i]) & mask; + f[i] = f[i] ^ x; + } +} + + +// Signed carry propagation +// ------------------------ +// +// Let t be a number. It can be uniquely decomposed thus: +// +// t = h*2^26 + l +// such that -2^25 <= l < 2^25 +// +// Let c = (t + 2^25) / 2^26 (rounded down) +// c = (h*2^26 + l + 2^25) / 2^26 (rounded down) +// c = h + (l + 2^25) / 2^26 (rounded down) +// c = h (exactly) +// Because 0 <= l + 2^25 < 2^26 +// +// Let u = t - c*2^26 +// u = h*2^26 + l - h*2^26 +// u = l +// Therefore, -2^25 <= u < 2^25 +// +// Additionally, if |t| < x, then |h| < x/2^26 (rounded down) +// +// Notations: +// - In C, 1<<25 means 2^25. +// - In C, x>>25 means floor(x / (2^25)). +// - All of the above applies with 25 & 24 as well as 26 & 25. +// +// +// Note on negative right shifts +// ----------------------------- +// +// In C, x >> n, where x is a negative integer, is implementation +// defined. In practice, all platforms do arithmetic shift, which is +// equivalent to division by 2^26, rounded down. Some compilers, like +// GCC, even guarantee it. +// +// If we ever stumble upon a platform that does not propagate the sign +// bit (we won't), visible failures will show at the slightest test, and +// the signed shifts can be replaced by the following: +// +// typedef struct { i64 x:39; } s25; +// typedef struct { i64 x:38; } s26; +// i64 shift25(i64 x) { s25 s; s.x = ((u64)x)>>25; return s.x; } +// i64 shift26(i64 x) { s26 s; s.x = ((u64)x)>>26; return s.x; } +// +// Current compilers cannot optimise this, causing a 30% drop in +// performance. Fairly expensive for something that never happens. +// +// +// Precondition +// ------------ +// +// |t0| < 2^63 +// |t1|..|t9| < 2^62 +// +// Algorithm +// --------- +// c = t0 + 2^25 / 2^26 -- |c| <= 2^36 +// t0 -= c * 2^26 -- |t0| <= 2^25 +// t1 += c -- |t1| <= 2^63 +// +// c = t4 + 2^25 / 2^26 -- |c| <= 2^36 +// t4 -= c * 2^26 -- |t4| <= 2^25 +// t5 += c -- |t5| <= 2^63 +// +// c = t1 + 2^24 / 2^25 -- |c| <= 2^38 +// t1 -= c * 2^25 -- |t1| <= 2^24 +// t2 += c -- |t2| <= 2^63 +// +// c = t5 + 2^24 / 2^25 -- |c| <= 2^38 +// t5 -= c * 2^25 -- |t5| <= 2^24 +// t6 += c -- |t6| <= 2^63 +// +// c = t2 + 2^25 / 2^26 -- |c| <= 2^37 +// t2 -= c * 2^26 -- |t2| <= 2^25 < 1.1 * 2^25 (final t2) +// t3 += c -- |t3| <= 2^63 +// +// c = t6 + 2^25 / 2^26 -- |c| <= 2^37 +// t6 -= c * 2^26 -- |t6| <= 2^25 < 1.1 * 2^25 (final t6) +// t7 += c -- |t7| <= 2^63 +// +// c = t3 + 2^24 / 2^25 -- |c| <= 2^38 +// t3 -= c * 2^25 -- |t3| <= 2^24 < 1.1 * 2^24 (final t3) +// t4 += c -- |t4| <= 2^25 + 2^38 < 2^39 +// +// c = t7 + 2^24 / 2^25 -- |c| <= 2^38 +// t7 -= c * 2^25 -- |t7| <= 2^24 < 1.1 * 2^24 (final t7) +// t8 += c -- |t8| <= 2^63 +// +// c = t4 + 2^25 / 2^26 -- |c| <= 2^13 +// t4 -= c * 2^26 -- |t4| <= 2^25 < 1.1 * 2^25 (final t4) +// t5 += c -- |t5| <= 2^24 + 2^13 < 1.1 * 2^24 (final t5) +// +// c = t8 + 2^25 / 2^26 -- |c| <= 2^37 +// t8 -= c * 2^26 -- |t8| <= 2^25 < 1.1 * 2^25 (final t8) +// t9 += c -- |t9| <= 2^63 +// +// c = t9 + 2^24 / 2^25 -- |c| <= 2^38 +// t9 -= c * 2^25 -- |t9| <= 2^24 < 1.1 * 2^24 (final t9) +// t0 += c * 19 -- |t0| <= 2^25 + 2^38*19 < 2^44 +// +// c = t0 + 2^25 / 2^26 -- |c| <= 2^18 +// t0 -= c * 2^26 -- |t0| <= 2^25 < 1.1 * 2^25 (final t0) +// t1 += c -- |t1| <= 2^24 + 2^18 < 1.1 * 2^24 (final t1) +// +// Postcondition +// ------------- +// |t0|, |t2|, |t4|, |t6|, |t8| < 1.1 * 2^25 +// |t1|, |t3|, |t5|, |t7|, |t9| < 1.1 * 2^24 +#define FE_CARRY \ + i64 c; \ + c = (t0 + ((i64)1<<25)) >> 26; t0 -= c * ((i64)1 << 26); t1 += c; \ + c = (t4 + ((i64)1<<25)) >> 26; t4 -= c * ((i64)1 << 26); t5 += c; \ + c = (t1 + ((i64)1<<24)) >> 25; t1 -= c * ((i64)1 << 25); t2 += c; \ + c = (t5 + ((i64)1<<24)) >> 25; t5 -= c * ((i64)1 << 25); t6 += c; \ + c = (t2 + ((i64)1<<25)) >> 26; t2 -= c * ((i64)1 << 26); t3 += c; \ + c = (t6 + ((i64)1<<25)) >> 26; t6 -= c * ((i64)1 << 26); t7 += c; \ + c = (t3 + ((i64)1<<24)) >> 25; t3 -= c * ((i64)1 << 25); t4 += c; \ + c = (t7 + ((i64)1<<24)) >> 25; t7 -= c * ((i64)1 << 25); t8 += c; \ + c = (t4 + ((i64)1<<25)) >> 26; t4 -= c * ((i64)1 << 26); t5 += c; \ + c = (t8 + ((i64)1<<25)) >> 26; t8 -= c * ((i64)1 << 26); t9 += c; \ + c = (t9 + ((i64)1<<24)) >> 25; t9 -= c * ((i64)1 << 25); t0 += c * 19; \ + c = (t0 + ((i64)1<<25)) >> 26; t0 -= c * ((i64)1 << 26); t1 += c; \ + h[0]=(i32)t0; h[1]=(i32)t1; h[2]=(i32)t2; h[3]=(i32)t3; h[4]=(i32)t4; \ + h[5]=(i32)t5; h[6]=(i32)t6; h[7]=(i32)t7; h[8]=(i32)t8; h[9]=(i32)t9 + +// Decodes a field element from a byte buffer. +// mask specifies how many bits we ignore. +// Traditionally we ignore 1. It's useful for EdDSA, +// which uses that bit to denote the sign of x. +// Elligator however uses positive representatives, +// which means ignoring 2 bits instead. +static void fe_frombytes_mask(fe h, const u8 s[32], unsigned nb_mask) +{ + i32 mask = 0xffffff >> nb_mask; + i64 t0 = load32_le(s); // t0 < 2^32 + i64 t1 = load24_le(s + 4) << 6; // t1 < 2^30 + i64 t2 = load24_le(s + 7) << 5; // t2 < 2^29 + i64 t3 = load24_le(s + 10) << 3; // t3 < 2^27 + i64 t4 = load24_le(s + 13) << 2; // t4 < 2^26 + i64 t5 = load32_le(s + 16); // t5 < 2^32 + i64 t6 = load24_le(s + 20) << 7; // t6 < 2^31 + i64 t7 = load24_le(s + 23) << 5; // t7 < 2^29 + i64 t8 = load24_le(s + 26) << 4; // t8 < 2^28 + i64 t9 = (load24_le(s + 29) & mask) << 2; // t9 < 2^25 + FE_CARRY; // Carry precondition OK +} + +static void fe_frombytes(fe h, const u8 s[32]) +{ + fe_frombytes_mask(h, s, 1); +} + + +// Precondition +// |h[0]|, |h[2]|, |h[4]|, |h[6]|, |h[8]| < 1.1 * 2^25 +// |h[1]|, |h[3]|, |h[5]|, |h[7]|, |h[9]| < 1.1 * 2^24 +// +// Therefore, |h| < 2^255-19 +// There are two possibilities: +// +// - If h is positive, all we need to do is reduce its individual +// limbs down to their tight positive range. +// - If h is negative, we also need to add 2^255-19 to it. +// Or just remove 19 and chop off any excess bit. +static void fe_tobytes(u8 s[32], const fe h) +{ + i32 t[10]; + COPY(t, h, 10); + i32 q = (19 * t[9] + (((i32) 1) << 24)) >> 25; + // |t9| < 1.1 * 2^24 + // -1.1 * 2^24 < t9 < 1.1 * 2^24 + // -21 * 2^24 < 19 * t9 < 21 * 2^24 + // -2^29 < 19 * t9 + 2^24 < 2^29 + // -2^29 / 2^25 < (19 * t9 + 2^24) / 2^25 < 2^29 / 2^25 + // -16 < (19 * t9 + 2^24) / 2^25 < 16 + FOR (i, 0, 5) { + q += t[2*i ]; q >>= 26; // q = 0 or -1 + q += t[2*i+1]; q >>= 25; // q = 0 or -1 + } + // q = 0 iff h >= 0 + // q = -1 iff h < 0 + // Adding q * 19 to h reduces h to its proper range. + q *= 19; // Shift carry back to the beginning + FOR (i, 0, 5) { + t[i*2 ] += q; q = t[i*2 ] >> 26; t[i*2 ] -= q * ((i32)1 << 26); + t[i*2+1] += q; q = t[i*2+1] >> 25; t[i*2+1] -= q * ((i32)1 << 25); + } + // h is now fully reduced, and q represents the excess bit. + + store32_le(s + 0, ((u32)t[0] >> 0) | ((u32)t[1] << 26)); + store32_le(s + 4, ((u32)t[1] >> 6) | ((u32)t[2] << 19)); + store32_le(s + 8, ((u32)t[2] >> 13) | ((u32)t[3] << 13)); + store32_le(s + 12, ((u32)t[3] >> 19) | ((u32)t[4] << 6)); + store32_le(s + 16, ((u32)t[5] >> 0) | ((u32)t[6] << 25)); + store32_le(s + 20, ((u32)t[6] >> 7) | ((u32)t[7] << 19)); + store32_le(s + 24, ((u32)t[7] >> 13) | ((u32)t[8] << 12)); + store32_le(s + 28, ((u32)t[8] >> 20) | ((u32)t[9] << 6)); + + WIPE_BUFFER(t); +} + +// Precondition +// ------------- +// |f0|, |f2|, |f4|, |f6|, |f8| < 1.65 * 2^26 +// |f1|, |f3|, |f5|, |f7|, |f9| < 1.65 * 2^25 +// +// |g0|, |g2|, |g4|, |g6|, |g8| < 1.65 * 2^26 +// |g1|, |g3|, |g5|, |g7|, |g9| < 1.65 * 2^25 +static void fe_mul_small(fe h, const fe f, i32 g) +{ + i64 t0 = f[0] * (i64) g; i64 t1 = f[1] * (i64) g; + i64 t2 = f[2] * (i64) g; i64 t3 = f[3] * (i64) g; + i64 t4 = f[4] * (i64) g; i64 t5 = f[5] * (i64) g; + i64 t6 = f[6] * (i64) g; i64 t7 = f[7] * (i64) g; + i64 t8 = f[8] * (i64) g; i64 t9 = f[9] * (i64) g; + // |t0|, |t2|, |t4|, |t6|, |t8| < 1.65 * 2^26 * 2^31 < 2^58 + // |t1|, |t3|, |t5|, |t7|, |t9| < 1.65 * 2^25 * 2^31 < 2^57 + + FE_CARRY; // Carry precondition OK +} + +// Precondition +// ------------- +// |f0|, |f2|, |f4|, |f6|, |f8| < 1.65 * 2^26 +// |f1|, |f3|, |f5|, |f7|, |f9| < 1.65 * 2^25 +// +// |g0|, |g2|, |g4|, |g6|, |g8| < 1.65 * 2^26 +// |g1|, |g3|, |g5|, |g7|, |g9| < 1.65 * 2^25 +static void fe_mul(fe h, const fe f, const fe g) +{ + // Everything is unrolled and put in temporary variables. + // We could roll the loop, but that would make curve25519 twice as slow. + i32 f0 = f[0]; i32 f1 = f[1]; i32 f2 = f[2]; i32 f3 = f[3]; i32 f4 = f[4]; + i32 f5 = f[5]; i32 f6 = f[6]; i32 f7 = f[7]; i32 f8 = f[8]; i32 f9 = f[9]; + i32 g0 = g[0]; i32 g1 = g[1]; i32 g2 = g[2]; i32 g3 = g[3]; i32 g4 = g[4]; + i32 g5 = g[5]; i32 g6 = g[6]; i32 g7 = g[7]; i32 g8 = g[8]; i32 g9 = g[9]; + i32 F1 = f1*2; i32 F3 = f3*2; i32 F5 = f5*2; i32 F7 = f7*2; i32 F9 = f9*2; + i32 G1 = g1*19; i32 G2 = g2*19; i32 G3 = g3*19; + i32 G4 = g4*19; i32 G5 = g5*19; i32 G6 = g6*19; + i32 G7 = g7*19; i32 G8 = g8*19; i32 G9 = g9*19; + // |F1|, |F3|, |F5|, |F7|, |F9| < 1.65 * 2^26 + // |G0|, |G2|, |G4|, |G6|, |G8| < 2^31 + // |G1|, |G3|, |G5|, |G7|, |G9| < 2^30 + + i64 t0 = f0*(i64)g0 + F1*(i64)G9 + f2*(i64)G8 + F3*(i64)G7 + f4*(i64)G6 + + F5*(i64)G5 + f6*(i64)G4 + F7*(i64)G3 + f8*(i64)G2 + F9*(i64)G1; + i64 t1 = f0*(i64)g1 + f1*(i64)g0 + f2*(i64)G9 + f3*(i64)G8 + f4*(i64)G7 + + f5*(i64)G6 + f6*(i64)G5 + f7*(i64)G4 + f8*(i64)G3 + f9*(i64)G2; + i64 t2 = f0*(i64)g2 + F1*(i64)g1 + f2*(i64)g0 + F3*(i64)G9 + f4*(i64)G8 + + F5*(i64)G7 + f6*(i64)G6 + F7*(i64)G5 + f8*(i64)G4 + F9*(i64)G3; + i64 t3 = f0*(i64)g3 + f1*(i64)g2 + f2*(i64)g1 + f3*(i64)g0 + f4*(i64)G9 + + f5*(i64)G8 + f6*(i64)G7 + f7*(i64)G6 + f8*(i64)G5 + f9*(i64)G4; + i64 t4 = f0*(i64)g4 + F1*(i64)g3 + f2*(i64)g2 + F3*(i64)g1 + f4*(i64)g0 + + F5*(i64)G9 + f6*(i64)G8 + F7*(i64)G7 + f8*(i64)G6 + F9*(i64)G5; + i64 t5 = f0*(i64)g5 + f1*(i64)g4 + f2*(i64)g3 + f3*(i64)g2 + f4*(i64)g1 + + f5*(i64)g0 + f6*(i64)G9 + f7*(i64)G8 + f8*(i64)G7 + f9*(i64)G6; + i64 t6 = f0*(i64)g6 + F1*(i64)g5 + f2*(i64)g4 + F3*(i64)g3 + f4*(i64)g2 + + F5*(i64)g1 + f6*(i64)g0 + F7*(i64)G9 + f8*(i64)G8 + F9*(i64)G7; + i64 t7 = f0*(i64)g7 + f1*(i64)g6 + f2*(i64)g5 + f3*(i64)g4 + f4*(i64)g3 + + f5*(i64)g2 + f6*(i64)g1 + f7*(i64)g0 + f8*(i64)G9 + f9*(i64)G8; + i64 t8 = f0*(i64)g8 + F1*(i64)g7 + f2*(i64)g6 + F3*(i64)g5 + f4*(i64)g4 + + F5*(i64)g3 + f6*(i64)g2 + F7*(i64)g1 + f8*(i64)g0 + F9*(i64)G9; + i64 t9 = f0*(i64)g9 + f1*(i64)g8 + f2*(i64)g7 + f3*(i64)g6 + f4*(i64)g5 + + f5*(i64)g4 + f6*(i64)g3 + f7*(i64)g2 + f8*(i64)g1 + f9*(i64)g0; + // t0 < 0.67 * 2^61 + // t1 < 0.41 * 2^61 + // t2 < 0.52 * 2^61 + // t3 < 0.32 * 2^61 + // t4 < 0.38 * 2^61 + // t5 < 0.22 * 2^61 + // t6 < 0.23 * 2^61 + // t7 < 0.13 * 2^61 + // t8 < 0.09 * 2^61 + // t9 < 0.03 * 2^61 + + FE_CARRY; // Everything below 2^62, Carry precondition OK +} + +// Precondition +// ------------- +// |f0|, |f2|, |f4|, |f6|, |f8| < 1.65 * 2^26 +// |f1|, |f3|, |f5|, |f7|, |f9| < 1.65 * 2^25 +// +// Note: we could use fe_mul() for this, but this is significantly faster +static void fe_sq(fe h, const fe f) +{ + i32 f0 = f[0]; i32 f1 = f[1]; i32 f2 = f[2]; i32 f3 = f[3]; i32 f4 = f[4]; + i32 f5 = f[5]; i32 f6 = f[6]; i32 f7 = f[7]; i32 f8 = f[8]; i32 f9 = f[9]; + i32 f0_2 = f0*2; i32 f1_2 = f1*2; i32 f2_2 = f2*2; i32 f3_2 = f3*2; + i32 f4_2 = f4*2; i32 f5_2 = f5*2; i32 f6_2 = f6*2; i32 f7_2 = f7*2; + i32 f5_38 = f5*38; i32 f6_19 = f6*19; i32 f7_38 = f7*38; + i32 f8_19 = f8*19; i32 f9_38 = f9*38; + // |f0_2| , |f2_2| , |f4_2| , |f6_2| , |f8_2| < 1.65 * 2^27 + // |f1_2| , |f3_2| , |f5_2| , |f7_2| , |f9_2| < 1.65 * 2^26 + // |f5_38|, |f6_19|, |f7_38|, |f8_19|, |f9_38| < 2^31 + + i64 t0 = f0 *(i64)f0 + f1_2*(i64)f9_38 + f2_2*(i64)f8_19 + + f3_2*(i64)f7_38 + f4_2*(i64)f6_19 + f5 *(i64)f5_38; + i64 t1 = f0_2*(i64)f1 + f2 *(i64)f9_38 + f3_2*(i64)f8_19 + + f4 *(i64)f7_38 + f5_2*(i64)f6_19; + i64 t2 = f0_2*(i64)f2 + f1_2*(i64)f1 + f3_2*(i64)f9_38 + + f4_2*(i64)f8_19 + f5_2*(i64)f7_38 + f6 *(i64)f6_19; + i64 t3 = f0_2*(i64)f3 + f1_2*(i64)f2 + f4 *(i64)f9_38 + + f5_2*(i64)f8_19 + f6 *(i64)f7_38; + i64 t4 = f0_2*(i64)f4 + f1_2*(i64)f3_2 + f2 *(i64)f2 + + f5_2*(i64)f9_38 + f6_2*(i64)f8_19 + f7 *(i64)f7_38; + i64 t5 = f0_2*(i64)f5 + f1_2*(i64)f4 + f2_2*(i64)f3 + + f6 *(i64)f9_38 + f7_2*(i64)f8_19; + i64 t6 = f0_2*(i64)f6 + f1_2*(i64)f5_2 + f2_2*(i64)f4 + + f3_2*(i64)f3 + f7_2*(i64)f9_38 + f8 *(i64)f8_19; + i64 t7 = f0_2*(i64)f7 + f1_2*(i64)f6 + f2_2*(i64)f5 + + f3_2*(i64)f4 + f8 *(i64)f9_38; + i64 t8 = f0_2*(i64)f8 + f1_2*(i64)f7_2 + f2_2*(i64)f6 + + f3_2*(i64)f5_2 + f4 *(i64)f4 + f9 *(i64)f9_38; + i64 t9 = f0_2*(i64)f9 + f1_2*(i64)f8 + f2_2*(i64)f7 + + f3_2*(i64)f6 + f4 *(i64)f5_2; + // t0 < 0.67 * 2^61 + // t1 < 0.41 * 2^61 + // t2 < 0.52 * 2^61 + // t3 < 0.32 * 2^61 + // t4 < 0.38 * 2^61 + // t5 < 0.22 * 2^61 + // t6 < 0.23 * 2^61 + // t7 < 0.13 * 2^61 + // t8 < 0.09 * 2^61 + // t9 < 0.03 * 2^61 + + FE_CARRY; +} + +// Parity check. Returns 0 if even, 1 if odd +static int fe_isodd(const fe f) +{ + u8 s[32]; + fe_tobytes(s, f); + u8 isodd = s[0] & 1; + WIPE_BUFFER(s); + return isodd; +} + +// Returns 1 if equal, 0 if not equal +static int fe_isequal(const fe f, const fe g) +{ + u8 fs[32]; + u8 gs[32]; + fe_tobytes(fs, f); + fe_tobytes(gs, g); + int isdifferent = crypto_verify32(fs, gs); + WIPE_BUFFER(fs); + WIPE_BUFFER(gs); + return 1 + isdifferent; +} + +// Inverse square root. +// Returns true if x is a square, false otherwise. +// After the call: +// isr = sqrt(1/x) if x is a non-zero square. +// isr = sqrt(sqrt(-1)/x) if x is not a square. +// isr = 0 if x is zero. +// We do not guarantee the sign of the square root. +// +// Notes: +// Let quartic = x^((p-1)/4) +// +// x^((p-1)/2) = chi(x) +// quartic^2 = chi(x) +// quartic = sqrt(chi(x)) +// quartic = 1 or -1 or sqrt(-1) or -sqrt(-1) +// +// Note that x is a square if quartic is 1 or -1 +// There are 4 cases to consider: +// +// if quartic = 1 (x is a square) +// then x^((p-1)/4) = 1 +// x^((p-5)/4) * x = 1 +// x^((p-5)/4) = 1/x +// x^((p-5)/8) = sqrt(1/x) or -sqrt(1/x) +// +// if quartic = -1 (x is a square) +// then x^((p-1)/4) = -1 +// x^((p-5)/4) * x = -1 +// x^((p-5)/4) = -1/x +// x^((p-5)/8) = sqrt(-1) / sqrt(x) +// x^((p-5)/8) * sqrt(-1) = sqrt(-1)^2 / sqrt(x) +// x^((p-5)/8) * sqrt(-1) = -1/sqrt(x) +// x^((p-5)/8) * sqrt(-1) = -sqrt(1/x) or sqrt(1/x) +// +// if quartic = sqrt(-1) (x is not a square) +// then x^((p-1)/4) = sqrt(-1) +// x^((p-5)/4) * x = sqrt(-1) +// x^((p-5)/4) = sqrt(-1)/x +// x^((p-5)/8) = sqrt(sqrt(-1)/x) or -sqrt(sqrt(-1)/x) +// +// Note that the product of two non-squares is always a square: +// For any non-squares a and b, chi(a) = -1 and chi(b) = -1. +// Since chi(x) = x^((p-1)/2), chi(a)*chi(b) = chi(a*b) = 1. +// Therefore a*b is a square. +// +// Since sqrt(-1) and x are both non-squares, their product is a +// square, and we can compute their square root. +// +// if quartic = -sqrt(-1) (x is not a square) +// then x^((p-1)/4) = -sqrt(-1) +// x^((p-5)/4) * x = -sqrt(-1) +// x^((p-5)/4) = -sqrt(-1)/x +// x^((p-5)/8) = sqrt(-sqrt(-1)/x) +// x^((p-5)/8) = sqrt( sqrt(-1)/x) * sqrt(-1) +// x^((p-5)/8) * sqrt(-1) = sqrt( sqrt(-1)/x) * sqrt(-1)^2 +// x^((p-5)/8) * sqrt(-1) = sqrt( sqrt(-1)/x) * -1 +// x^((p-5)/8) * sqrt(-1) = -sqrt(sqrt(-1)/x) or sqrt(sqrt(-1)/x) +static int invsqrt(fe isr, const fe x) +{ + fe t0, t1, t2; + + // t0 = x^((p-5)/8) + // Can be achieved with a simple double & add ladder, + // but it would be slower. + fe_sq(t0, x); + fe_sq(t1,t0); fe_sq(t1, t1); fe_mul(t1, x, t1); + fe_mul(t0, t0, t1); + fe_sq(t0, t0); fe_mul(t0, t1, t0); + fe_sq(t1, t0); FOR (i, 1, 5) fe_sq(t1, t1); fe_mul(t0, t1, t0); + fe_sq(t1, t0); FOR (i, 1, 10) fe_sq(t1, t1); fe_mul(t1, t1, t0); + fe_sq(t2, t1); FOR (i, 1, 20) fe_sq(t2, t2); fe_mul(t1, t2, t1); + fe_sq(t1, t1); FOR (i, 1, 10) fe_sq(t1, t1); fe_mul(t0, t1, t0); + fe_sq(t1, t0); FOR (i, 1, 50) fe_sq(t1, t1); fe_mul(t1, t1, t0); + fe_sq(t2, t1); FOR (i, 1, 100) fe_sq(t2, t2); fe_mul(t1, t2, t1); + fe_sq(t1, t1); FOR (i, 1, 50) fe_sq(t1, t1); fe_mul(t0, t1, t0); + fe_sq(t0, t0); FOR (i, 1, 2) fe_sq(t0, t0); fe_mul(t0, t0, x); + + // quartic = x^((p-1)/4) + i32 *quartic = t1; + fe_sq (quartic, t0); + fe_mul(quartic, quartic, x); + + i32 *check = t2; + fe_0 (check); int z0 = fe_isequal(x , check); + fe_1 (check); int p1 = fe_isequal(quartic, check); + fe_neg(check, check ); int m1 = fe_isequal(quartic, check); + fe_neg(check, sqrtm1); int ms = fe_isequal(quartic, check); + + // if quartic == -1 or sqrt(-1) + // then isr = x^((p-1)/4) * sqrt(-1) + // else isr = x^((p-1)/4) + fe_mul(isr, t0, sqrtm1); + fe_ccopy(isr, t0, 1 - (m1 | ms)); + + WIPE_BUFFER(t0); + WIPE_BUFFER(t1); + WIPE_BUFFER(t2); + return p1 | m1 | z0; +} + +// Inverse in terms of inverse square root. +// Requires two additional squarings to get rid of the sign. +// +// 1/x = x * (+invsqrt(x^2))^2 +// = x * (-invsqrt(x^2))^2 +// +// A fully optimised exponentiation by p-1 would save 6 field +// multiplications, but it would require more code. +static void fe_invert(fe out, const fe x) +{ + fe tmp; + fe_sq(tmp, x); + invsqrt(tmp, tmp); + fe_sq(tmp, tmp); + fe_mul(out, tmp, x); + WIPE_BUFFER(tmp); +} + +// trim a scalar for scalar multiplication +static void trim_scalar(u8 scalar[32]) +{ + scalar[ 0] &= 248; + scalar[31] &= 127; + scalar[31] |= 64; +} + +// get bit from scalar at position i +static int scalar_bit(const u8 s[32], int i) +{ + if (i < 0) { return 0; } // handle -1 for sliding windows + return (s[i>>3] >> (i&7)) & 1; +} + +/////////////// +/// X-25519 /// Taken from SUPERCOP's ref10 implementation. +/////////////// +static void scalarmult(u8 q[32], const u8 scalar[32], const u8 p[32], + int nb_bits) +{ + // computes the scalar product + fe x1; + fe_frombytes(x1, p); + + // computes the actual scalar product (the result is in x2 and z2) + fe x2, z2, x3, z3, t0, t1; + // Montgomery ladder + // In projective coordinates, to avoid divisions: x = X / Z + // We don't care about the y coordinate, it's only 1 bit of information + fe_1(x2); fe_0(z2); // "zero" point + fe_copy(x3, x1); fe_1(z3); // "one" point + int swap = 0; + for (int pos = nb_bits-1; pos >= 0; --pos) { + // constant time conditional swap before ladder step + int b = scalar_bit(scalar, pos); + swap ^= b; // xor trick avoids swapping at the end of the loop + fe_cswap(x2, x3, swap); + fe_cswap(z2, z3, swap); + swap = b; // anticipates one last swap after the loop + + // Montgomery ladder step: replaces (P2, P3) by (P2*2, P2+P3) + // with differential addition + fe_sub(t0, x3, z3); + fe_sub(t1, x2, z2); + fe_add(x2, x2, z2); + fe_add(z2, x3, z3); + fe_mul(z3, t0, x2); + fe_mul(z2, z2, t1); + fe_sq (t0, t1 ); + fe_sq (t1, x2 ); + fe_add(x3, z3, z2); + fe_sub(z2, z3, z2); + fe_mul(x2, t1, t0); + fe_sub(t1, t1, t0); + fe_sq (z2, z2 ); + fe_mul_small(z3, t1, 121666); + fe_sq (x3, x3 ); + fe_add(t0, t0, z3); + fe_mul(z3, x1, z2); + fe_mul(z2, t1, t0); + } + // last swap is necessary to compensate for the xor trick + // Note: after this swap, P3 == P2 + P1. + fe_cswap(x2, x3, swap); + fe_cswap(z2, z3, swap); + + // normalises the coordinates: x == X / Z + fe_invert(z2, z2); + fe_mul(x2, x2, z2); + fe_tobytes(q, x2); + + WIPE_BUFFER(x1); + WIPE_BUFFER(x2); WIPE_BUFFER(z2); WIPE_BUFFER(t0); + WIPE_BUFFER(x3); WIPE_BUFFER(z3); WIPE_BUFFER(t1); +} + +void crypto_x25519(u8 raw_shared_secret[32], + const u8 your_secret_key [32], + const u8 their_public_key [32]) +{ + // restrict the possible scalar values + u8 e[32]; + COPY(e, your_secret_key, 32); + trim_scalar(e); + scalarmult(raw_shared_secret, e, their_public_key, 255); + WIPE_BUFFER(e); +} + +void crypto_x25519_public_key(u8 public_key[32], + const u8 secret_key[32]) +{ + static const u8 base_point[32] = {9}; + crypto_x25519(public_key, secret_key, base_point); +} + +/////////////////////////// +/// Arithmetic modulo L /// +/////////////////////////// +static const u32 L[8] = {0x5cf5d3ed, 0x5812631a, 0xa2f79cd6, 0x14def9de, + 0x00000000, 0x00000000, 0x00000000, 0x10000000,}; + +// p = a*b + p +static void multiply(u32 p[16], const u32 a[8], const u32 b[8]) +{ + FOR (i, 0, 8) { + u64 carry = 0; + FOR (j, 0, 8) { + carry += p[i+j] + (u64)a[i] * b[j]; + p[i+j] = (u32)carry; + carry >>= 32; + } + p[i+8] = (u32)carry; + } +} + +static int is_above_l(const u32 x[8]) +{ + // We work with L directly, in a 2's complement encoding + // (-L == ~L + 1) + u64 carry = 1; + FOR (i, 0, 8) { + carry += (u64)x[i] + (~L[i] & 0xffffffff); + carry >>= 32; + } + return (int)carry; // carry is either 0 or 1 +} + +// Final reduction modulo L, by conditionally removing L. +// if x < l , then r = x +// if l <= x 2*l, then r = x-l +// otherwise the result will be wrong +static void remove_l(u32 r[8], const u32 x[8]) +{ + u64 carry = is_above_l(x); + u32 mask = ~(u32)carry + 1; // carry == 0 or 1 + FOR (i, 0, 8) { + carry += (u64)x[i] + (~L[i] & mask); + r[i] = (u32)carry; + carry >>= 32; + } +} + +// Full reduction modulo L (Barrett reduction) +static void mod_l(u8 reduced[32], const u32 x[16]) +{ + static const u32 r[9] = {0x0a2c131b,0xed9ce5a3,0x086329a7,0x2106215d, + 0xffffffeb,0xffffffff,0xffffffff,0xffffffff,0xf,}; + // xr = x * r + u32 xr[25] = {0}; + FOR (i, 0, 9) { + u64 carry = 0; + FOR (j, 0, 16) { + carry += xr[i+j] + (u64)r[i] * x[j]; + xr[i+j] = (u32)carry; + carry >>= 32; + } + xr[i+16] = (u32)carry; + } + // xr = floor(xr / 2^512) * L + // Since the result is guaranteed to be below 2*L, + // it is enough to only compute the first 256 bits. + // The division is performed by saying xr[i+16]. (16 * 32 = 512) + ZERO(xr, 8); + FOR (i, 0, 8) { + u64 carry = 0; + FOR (j, 0, 8-i) { + carry += xr[i+j] + (u64)xr[i+16] * L[j]; + xr[i+j] = (u32)carry; + carry >>= 32; + } + } + // xr = x - xr + u64 carry = 1; + FOR (i, 0, 8) { + carry += (u64)x[i] + (~xr[i] & 0xffffffff); + xr[i] = (u32)carry; + carry >>= 32; + } + // Final reduction modulo L (conditional subtraction) + remove_l(xr, xr); + store32_le_buf(reduced, xr, 8); + + WIPE_BUFFER(xr); +} + +static void reduce(u8 r[64]) +{ + u32 x[16]; + load32_le_buf(x, r, 16); + mod_l(r, x); + WIPE_BUFFER(x); +} + +// r = (a * b) + c +static void mul_add(u8 r[32], const u8 a[32], const u8 b[32], const u8 c[32]) +{ + u32 A[8]; load32_le_buf(A, a, 8); + u32 B[8]; load32_le_buf(B, b, 8); + u32 p[16]; load32_le_buf(p, c, 8); ZERO(p + 8, 8); + multiply(p, A, B); + mod_l(r, p); + WIPE_BUFFER(p); + WIPE_BUFFER(A); + WIPE_BUFFER(B); +} + +/////////////// +/// Ed25519 /// +/////////////// + +// Point (group element, ge) in a twisted Edwards curve, +// in extended projective coordinates. +// ge : x = X/Z, y = Y/Z, T = XY/Z +// ge_cached : Yp = X+Y, Ym = X-Y, T2 = T*D2 +// ge_precomp: Z = 1 +typedef struct { fe X; fe Y; fe Z; fe T; } ge; +typedef struct { fe Yp; fe Ym; fe Z; fe T2; } ge_cached; +typedef struct { fe Yp; fe Ym; fe T2; } ge_precomp; + +static void ge_zero(ge *p) +{ + fe_0(p->X); + fe_1(p->Y); + fe_1(p->Z); + fe_0(p->T); +} + +static void ge_tobytes(u8 s[32], const ge *h) +{ + fe recip, x, y; + fe_invert(recip, h->Z); + fe_mul(x, h->X, recip); + fe_mul(y, h->Y, recip); + fe_tobytes(s, y); + s[31] ^= fe_isodd(x) << 7; + + WIPE_BUFFER(recip); + WIPE_BUFFER(x); + WIPE_BUFFER(y); +} + +// h = -s, where s is a point encoded in 32 bytes +// +// Variable time! Inputs must not be secret! +// => Use only to *check* signatures. +// +// From the specifications: +// The encoding of s contains y and the sign of x +// x = sqrt((y^2 - 1) / (d*y^2 + 1)) +// In extended coordinates: +// X = x, Y = y, Z = 1, T = x*y +// +// Note that num * den is a square iff num / den is a square +// If num * den is not a square, the point was not on the curve. +// From the above: +// Let num = y^2 - 1 +// Let den = d*y^2 + 1 +// x = sqrt((y^2 - 1) / (d*y^2 + 1)) +// x = sqrt(num / den) +// x = sqrt(num^2 / (num * den)) +// x = num * sqrt(1 / (num * den)) +// +// Therefore, we can just compute: +// num = y^2 - 1 +// den = d*y^2 + 1 +// isr = invsqrt(num * den) // abort if not square +// x = num * isr +// Finally, negate x if its sign is not as specified. +static int ge_frombytes_neg_vartime(ge *h, const u8 s[32]) +{ + fe_frombytes(h->Y, s); + fe_1(h->Z); + fe_sq (h->T, h->Y); // t = y^2 + fe_mul(h->X, h->T, d ); // x = d*y^2 + fe_sub(h->T, h->T, h->Z); // t = y^2 - 1 + fe_add(h->X, h->X, h->Z); // x = d*y^2 + 1 + fe_mul(h->X, h->T, h->X); // x = (y^2 - 1) * (d*y^2 + 1) + int is_square = invsqrt(h->X, h->X); + if (!is_square) { + return -1; // Not on the curve, abort + } + fe_mul(h->X, h->T, h->X); // x = sqrt((y^2 - 1) / (d*y^2 + 1)) + if (fe_isodd(h->X) == (s[31] >> 7)) { + fe_neg(h->X, h->X); + } + fe_mul(h->T, h->X, h->Y); + return 0; +} + +static void ge_cache(ge_cached *c, const ge *p) +{ + fe_add (c->Yp, p->Y, p->X); + fe_sub (c->Ym, p->Y, p->X); + fe_copy(c->Z , p->Z ); + fe_mul (c->T2, p->T, D2 ); +} + +// Internal buffers are not wiped! Inputs must not be secret! +// => Use only to *check* signatures. +static void ge_add(ge *s, const ge *p, const ge_cached *q) +{ + fe a, b; + fe_add(a , p->Y, p->X ); + fe_sub(b , p->Y, p->X ); + fe_mul(a , a , q->Yp); + fe_mul(b , b , q->Ym); + fe_add(s->Y, a , b ); + fe_sub(s->X, a , b ); + + fe_add(s->Z, p->Z, p->Z ); + fe_mul(s->Z, s->Z, q->Z ); + fe_mul(s->T, p->T, q->T2); + fe_add(a , s->Z, s->T ); + fe_sub(b , s->Z, s->T ); + + fe_mul(s->T, s->X, s->Y); + fe_mul(s->X, s->X, b ); + fe_mul(s->Y, s->Y, a ); + fe_mul(s->Z, a , b ); +} + +// Internal buffers are not wiped! Inputs must not be secret! +// => Use only to *check* signatures. +static void ge_sub(ge *s, const ge *p, const ge_cached *q) +{ + ge_cached neg; + fe_copy(neg.Ym, q->Yp); + fe_copy(neg.Yp, q->Ym); + fe_copy(neg.Z , q->Z ); + fe_neg (neg.T2, q->T2); + ge_add(s, p, &neg); +} + +static void ge_madd(ge *s, const ge *p, const ge_precomp *q, fe a, fe b) +{ + fe_add(a , p->Y, p->X ); + fe_sub(b , p->Y, p->X ); + fe_mul(a , a , q->Yp); + fe_mul(b , b , q->Ym); + fe_add(s->Y, a , b ); + fe_sub(s->X, a , b ); + + fe_add(s->Z, p->Z, p->Z ); + fe_mul(s->T, p->T, q->T2); + fe_add(a , s->Z, s->T ); + fe_sub(b , s->Z, s->T ); + + fe_mul(s->T, s->X, s->Y); + fe_mul(s->X, s->X, b ); + fe_mul(s->Y, s->Y, a ); + fe_mul(s->Z, a , b ); +} + +// Internal buffers are not wiped! Inputs must not be secret! +// => Use only to *check* signatures. +static void ge_msub(ge *s, const ge *p, const ge_precomp *q, fe a, fe b) +{ + ge_precomp neg; + fe_copy(neg.Ym, q->Yp); + fe_copy(neg.Yp, q->Ym); + fe_neg (neg.T2, q->T2); + ge_madd(s, p, &neg, a, b); +} + +static void ge_double(ge *s, const ge *p, ge *q) +{ + fe_sq (q->X, p->X); + fe_sq (q->Y, p->Y); + fe_sq (q->Z, p->Z); // qZ = pZ^2 + fe_mul_small(q->Z, q->Z, 2); // qZ = pZ^2 * 2 + fe_add(q->T, p->X, p->Y); + fe_sq (s->T, q->T); + fe_add(q->T, q->Y, q->X); + fe_sub(q->Y, q->Y, q->X); + fe_sub(q->X, s->T, q->T); + fe_sub(q->Z, q->Z, q->Y); + + fe_mul(s->X, q->X , q->Z); + fe_mul(s->Y, q->T , q->Y); + fe_mul(s->Z, q->Y , q->Z); + fe_mul(s->T, q->X , q->T); +} + +// 5-bit signed window in cached format (Niels coordinates, Z=1) +static const ge_precomp b_window[8] = { + {{25967493,-14356035,29566456,3660896,-12694345, + 4014787,27544626,-11754271,-6079156,2047605,}, + {-12545711,934262,-2722910,3049990,-727428, + 9406986,12720692,5043384,19500929,-15469378,}, + {-8738181,4489570,9688441,-14785194,10184609, + -12363380,29287919,11864899,-24514362,-4438546,},}, + {{15636291,-9688557,24204773,-7912398,616977, + -16685262,27787600,-14772189,28944400,-1550024,}, + {16568933,4717097,-11556148,-1102322,15682896, + -11807043,16354577,-11775962,7689662,11199574,}, + {30464156,-5976125,-11779434,-15670865,23220365, + 15915852,7512774,10017326,-17749093,-9920357,},}, + {{10861363,11473154,27284546,1981175,-30064349, + 12577861,32867885,14515107,-15438304,10819380,}, + {4708026,6336745,20377586,9066809,-11272109, + 6594696,-25653668,12483688,-12668491,5581306,}, + {19563160,16186464,-29386857,4097519,10237984, + -4348115,28542350,13850243,-23678021,-15815942,},}, + {{5153746,9909285,1723747,-2777874,30523605, + 5516873,19480852,5230134,-23952439,-15175766,}, + {-30269007,-3463509,7665486,10083793,28475525, + 1649722,20654025,16520125,30598449,7715701,}, + {28881845,14381568,9657904,3680757,-20181635, + 7843316,-31400660,1370708,29794553,-1409300,},}, + {{-22518993,-6692182,14201702,-8745502,-23510406, + 8844726,18474211,-1361450,-13062696,13821877,}, + {-6455177,-7839871,3374702,-4740862,-27098617, + -10571707,31655028,-7212327,18853322,-14220951,}, + {4566830,-12963868,-28974889,-12240689,-7602672, + -2830569,-8514358,-10431137,2207753,-3209784,},}, + {{-25154831,-4185821,29681144,7868801,-6854661, + -9423865,-12437364,-663000,-31111463,-16132436,}, + {25576264,-2703214,7349804,-11814844,16472782, + 9300885,3844789,15725684,171356,6466918,}, + {23103977,13316479,9739013,-16149481,817875, + -15038942,8965339,-14088058,-30714912,16193877,},}, + {{-33521811,3180713,-2394130,14003687,-16903474, + -16270840,17238398,4729455,-18074513,9256800,}, + {-25182317,-4174131,32336398,5036987,-21236817, + 11360617,22616405,9761698,-19827198,630305,}, + {-13720693,2639453,-24237460,-7406481,9494427, + -5774029,-6554551,-15960994,-2449256,-14291300,},}, + {{-3151181,-5046075,9282714,6866145,-31907062, + -863023,-18940575,15033784,25105118,-7894876,}, + {-24326370,15950226,-31801215,-14592823,-11662737, + -5090925,1573892,-2625887,2198790,-15804619,}, + {-3099351,10324967,-2241613,7453183,-5446979, + -2735503,-13812022,-16236442,-32461234,-12290683,},}, +}; + +// Incremental sliding windows (left to right) +// Based on Roberto Maria Avanzi[2005] +typedef struct { + i16 next_index; // position of the next signed digit + i8 next_digit; // next signed digit (odd number below 2^window_width) + u8 next_check; // point at which we must check for a new window +} slide_ctx; + +static void slide_init(slide_ctx *ctx, const u8 scalar[32]) +{ + // scalar is guaranteed to be below L, either because we checked (s), + // or because we reduced it modulo L (h_ram). L is under 2^253, so + // so bits 253 to 255 are guaranteed to be zero. No need to test them. + // + // Note however that L is very close to 2^252, so bit 252 is almost + // always zero. If we were to start at bit 251, the tests wouldn't + // catch the off-by-one error (constructing one that does would be + // prohibitively expensive). + // + // We should still check bit 252, though. + int i = 252; + while (i > 0 && scalar_bit(scalar, i) == 0) { + i--; + } + ctx->next_check = (u8)(i + 1); + ctx->next_index = -1; + ctx->next_digit = -1; +} + +static int slide_step(slide_ctx *ctx, int width, int i, const u8 scalar[32]) +{ + if (i == ctx->next_check) { + if (scalar_bit(scalar, i) == scalar_bit(scalar, i - 1)) { + ctx->next_check--; + } else { + // compute digit of next window + int w = MIN(width, i + 1); + int v = -(scalar_bit(scalar, i) << (w-1)); + FOR_T (int, j, 0, w-1) { + v += scalar_bit(scalar, i-(w-1)+j) << j; + } + v += scalar_bit(scalar, i-w); + int lsb = v & (~v + 1); // smallest bit of v + int s = ( ((lsb & 0xAA) != 0) // log2(lsb) + | (((lsb & 0xCC) != 0) << 1) + | (((lsb & 0xF0) != 0) << 2)); + ctx->next_index = (i16)(i-(w-1)+s); + ctx->next_digit = (i8) (v >> s ); + ctx->next_check -= (u8) w; + } + } + return i == ctx->next_index ? ctx->next_digit: 0; +} + +#define P_W_WIDTH 3 // Affects the size of the stack +#define B_W_WIDTH 5 // Affects the size of the binary +#define P_W_SIZE (1<<(P_W_WIDTH-2)) + +// P = [b]B + [p]P, where B is the base point +// +// Variable time! Internal buffers are not wiped! Inputs must not be secret! +// => Use only to *check* signatures. +static void ge_double_scalarmult_vartime(ge *P, const u8 p[32], const u8 b[32]) +{ + // cache P window for addition + ge_cached cP[P_W_SIZE]; + { + ge P2, tmp; + ge_double(&P2, P, &tmp); + ge_cache(&cP[0], P); + FOR (i, 1, P_W_SIZE) { + ge_add(&tmp, &P2, &cP[i-1]); + ge_cache(&cP[i], &tmp); + } + } + + // Merged double and add ladder, fused with sliding + slide_ctx p_slide; slide_init(&p_slide, p); + slide_ctx b_slide; slide_init(&b_slide, b); + int i = MAX(p_slide.next_check, b_slide.next_check); + ge *sum = P; + ge_zero(sum); + while (i >= 0) { + ge tmp; + ge_double(sum, sum, &tmp); + int p_digit = slide_step(&p_slide, P_W_WIDTH, i, p); + int b_digit = slide_step(&b_slide, B_W_WIDTH, i, b); + if (p_digit > 0) { ge_add(sum, sum, &cP[ p_digit / 2]); } + if (p_digit < 0) { ge_sub(sum, sum, &cP[-p_digit / 2]); } + fe t1, t2; + if (b_digit > 0) { ge_madd(sum, sum, b_window + b_digit/2, t1, t2); } + if (b_digit < 0) { ge_msub(sum, sum, b_window + -b_digit/2, t1, t2); } + i--; + } +} + +// 5-bit signed comb in cached format (Niels coordinates, Z=1) +static const ge_precomp b_comb_low[8] = { + {{-6816601,-2324159,-22559413,124364,18015490, + 8373481,19993724,1979872,-18549925,9085059,}, + {10306321,403248,14839893,9633706,8463310, + -8354981,-14305673,14668847,26301366,2818560,}, + {-22701500,-3210264,-13831292,-2927732,-16326337, + -14016360,12940910,177905,12165515,-2397893,},}, + {{-12282262,-7022066,9920413,-3064358,-32147467, + 2927790,22392436,-14852487,2719975,16402117,}, + {-7236961,-4729776,2685954,-6525055,-24242706, + -15940211,-6238521,14082855,10047669,12228189,}, + {-30495588,-12893761,-11161261,3539405,-11502464, + 16491580,-27286798,-15030530,-7272871,-15934455,},}, + {{17650926,582297,-860412,-187745,-12072900, + -10683391,-20352381,15557840,-31072141,-5019061,}, + {-6283632,-2259834,-4674247,-4598977,-4089240, + 12435688,-31278303,1060251,6256175,10480726,}, + {-13871026,2026300,-21928428,-2741605,-2406664, + -8034988,7355518,15733500,-23379862,7489131,},}, + {{6883359,695140,23196907,9644202,-33430614, + 11354760,-20134606,6388313,-8263585,-8491918,}, + {-7716174,-13605463,-13646110,14757414,-19430591, + -14967316,10359532,-11059670,-21935259,12082603,}, + {-11253345,-15943946,10046784,5414629,24840771, + 8086951,-6694742,9868723,15842692,-16224787,},}, + {{9639399,11810955,-24007778,-9320054,3912937, + -9856959,996125,-8727907,-8919186,-14097242,}, + {7248867,14468564,25228636,-8795035,14346339, + 8224790,6388427,-7181107,6468218,-8720783,}, + {15513115,15439095,7342322,-10157390,18005294, + -7265713,2186239,4884640,10826567,7135781,},}, + {{-14204238,5297536,-5862318,-6004934,28095835, + 4236101,-14203318,1958636,-16816875,3837147,}, + {-5511166,-13176782,-29588215,12339465,15325758, + -15945770,-8813185,11075932,-19608050,-3776283,}, + {11728032,9603156,-4637821,-5304487,-7827751, + 2724948,31236191,-16760175,-7268616,14799772,},}, + {{-28842672,4840636,-12047946,-9101456,-1445464, + 381905,-30977094,-16523389,1290540,12798615,}, + {27246947,-10320914,14792098,-14518944,5302070, + -8746152,-3403974,-4149637,-27061213,10749585,}, + {25572375,-6270368,-15353037,16037944,1146292, + 32198,23487090,9585613,24714571,-1418265,},}, + {{19844825,282124,-17583147,11004019,-32004269, + -2716035,6105106,-1711007,-21010044,14338445,}, + {8027505,8191102,-18504907,-12335737,25173494, + -5923905,15446145,7483684,-30440441,10009108,}, + {-14134701,-4174411,10246585,-14677495,33553567, + -14012935,23366126,15080531,-7969992,7663473,},}, +}; + +static const ge_precomp b_comb_high[8] = { + {{33055887,-4431773,-521787,6654165,951411, + -6266464,-5158124,6995613,-5397442,-6985227,}, + {4014062,6967095,-11977872,3960002,8001989, + 5130302,-2154812,-1899602,-31954493,-16173976,}, + {16271757,-9212948,23792794,731486,-25808309, + -3546396,6964344,-4767590,10976593,10050757,},}, + {{2533007,-4288439,-24467768,-12387405,-13450051, + 14542280,12876301,13893535,15067764,8594792,}, + {20073501,-11623621,3165391,-13119866,13188608, + -11540496,-10751437,-13482671,29588810,2197295,}, + {-1084082,11831693,6031797,14062724,14748428, + -8159962,-20721760,11742548,31368706,13161200,},}, + {{2050412,-6457589,15321215,5273360,25484180, + 124590,-18187548,-7097255,-6691621,-14604792,}, + {9938196,2162889,-6158074,-1711248,4278932, + -2598531,-22865792,-7168500,-24323168,11746309,}, + {-22691768,-14268164,5965485,9383325,20443693, + 5854192,28250679,-1381811,-10837134,13717818,},}, + {{-8495530,16382250,9548884,-4971523,-4491811, + -3902147,6182256,-12832479,26628081,10395408,}, + {27329048,-15853735,7715764,8717446,-9215518, + -14633480,28982250,-5668414,4227628,242148,}, + {-13279943,-7986904,-7100016,8764468,-27276630, + 3096719,29678419,-9141299,3906709,11265498,},}, + {{11918285,15686328,-17757323,-11217300,-27548967, + 4853165,-27168827,6807359,6871949,-1075745,}, + {-29002610,13984323,-27111812,-2713442,28107359, + -13266203,6155126,15104658,3538727,-7513788,}, + {14103158,11233913,-33165269,9279850,31014152, + 4335090,-1827936,4590951,13960841,12787712,},}, + {{1469134,-16738009,33411928,13942824,8092558, + -8778224,-11165065,1437842,22521552,-2792954,}, + {31352705,-4807352,-25327300,3962447,12541566, + -9399651,-27425693,7964818,-23829869,5541287,}, + {-25732021,-6864887,23848984,3039395,-9147354, + 6022816,-27421653,10590137,25309915,-1584678,},}, + {{-22951376,5048948,31139401,-190316,-19542447, + -626310,-17486305,-16511925,-18851313,-12985140,}, + {-9684890,14681754,30487568,7717771,-10829709, + 9630497,30290549,-10531496,-27798994,-13812825,}, + {5827835,16097107,-24501327,12094619,7413972, + 11447087,28057551,-1793987,-14056981,4359312,},}, + {{26323183,2342588,-21887793,-1623758,-6062284, + 2107090,-28724907,9036464,-19618351,-13055189,}, + {-29697200,14829398,-4596333,14220089,-30022969, + 2955645,12094100,-13693652,-5941445,7047569,}, + {-3201977,14413268,-12058324,-16417589,-9035655, + -7224648,9258160,1399236,30397584,-5684634,},}, +}; + +static void lookup_add(ge *p, ge_precomp *tmp_c, fe tmp_a, fe tmp_b, + const ge_precomp comb[8], const u8 scalar[32], int i) +{ + u8 teeth = (u8)((scalar_bit(scalar, i) ) + + (scalar_bit(scalar, i + 32) << 1) + + (scalar_bit(scalar, i + 64) << 2) + + (scalar_bit(scalar, i + 96) << 3)); + u8 high = teeth >> 3; + u8 index = (teeth ^ (high - 1)) & 7; + FOR (j, 0, 8) { + i32 select = 1 & (((j ^ index) - 1) >> 8); + fe_ccopy(tmp_c->Yp, comb[j].Yp, select); + fe_ccopy(tmp_c->Ym, comb[j].Ym, select); + fe_ccopy(tmp_c->T2, comb[j].T2, select); + } + fe_neg(tmp_a, tmp_c->T2); + fe_cswap(tmp_c->T2, tmp_a , high ^ 1); + fe_cswap(tmp_c->Yp, tmp_c->Ym, high ^ 1); + ge_madd(p, p, tmp_c, tmp_a, tmp_b); +} + +// p = [scalar]B, where B is the base point +static void ge_scalarmult_base(ge *p, const u8 scalar[32]) +{ + // twin 4-bits signed combs, from Mike Hamburg's + // Fast and compact elliptic-curve cryptography (2012) + // 1 / 2 modulo L + static const u8 half_mod_L[32] = { + 247,233,122,46,141,49,9,44,107,206,123,81,239,124,111,10, + 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8, }; + // (2^256 - 1) / 2 modulo L + static const u8 half_ones[32] = { + 142,74,204,70,186,24,118,107,184,231,190,57,250,173,119,99, + 255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,7, }; + + // All bits set form: 1 means 1, 0 means -1 + u8 s_scalar[32]; + mul_add(s_scalar, scalar, half_mod_L, half_ones); + + // Double and add ladder + fe tmp_a, tmp_b; // temporaries for addition + ge_precomp tmp_c; // temporary for comb lookup + ge tmp_d; // temporary for doubling + fe_1(tmp_c.Yp); + fe_1(tmp_c.Ym); + fe_0(tmp_c.T2); + + // Save a double on the first iteration + ge_zero(p); + lookup_add(p, &tmp_c, tmp_a, tmp_b, b_comb_low , s_scalar, 31); + lookup_add(p, &tmp_c, tmp_a, tmp_b, b_comb_high, s_scalar, 31+128); + // Regular double & add for the rest + for (int i = 30; i >= 0; i--) { + ge_double(p, p, &tmp_d); + lookup_add(p, &tmp_c, tmp_a, tmp_b, b_comb_low , s_scalar, i); + lookup_add(p, &tmp_c, tmp_a, tmp_b, b_comb_high, s_scalar, i+128); + } + // Note: we could save one addition at the end if we assumed the + // scalar fit in 252 bits. Which it does in practice if it is + // selected at random. However, non-random, non-hashed scalars + // *can* overflow 252 bits in practice. Better account for that + // than leaving that kind of subtle corner case. + + WIPE_BUFFER(tmp_a); WIPE_CTX(&tmp_d); + WIPE_BUFFER(tmp_b); WIPE_CTX(&tmp_c); + WIPE_BUFFER(s_scalar); +} + +void crypto_sign_public_key_custom_hash(u8 public_key[32], + const u8 secret_key[32], + const crypto_sign_vtable *hash) +{ + u8 a[64]; + hash->hash(a, secret_key, 32); + trim_scalar(a); + ge A; + ge_scalarmult_base(&A, a); + ge_tobytes(public_key, &A); + WIPE_BUFFER(a); + WIPE_CTX(&A); +} + +void crypto_sign_public_key(u8 public_key[32], const u8 secret_key[32]) +{ + crypto_sign_public_key_custom_hash(public_key, secret_key, + &crypto_blake2b_vtable); +} + +void crypto_sign_init_first_pass_custom_hash(crypto_sign_ctx_abstract *ctx, + const u8 secret_key[32], + const u8 public_key[32], + const crypto_sign_vtable *hash) +{ + ctx->hash = hash; // set vtable + u8 *a = ctx->buf; + u8 *prefix = ctx->buf + 32; + ctx->hash->hash(a, secret_key, 32); + trim_scalar(a); + + if (public_key == 0) { + crypto_sign_public_key_custom_hash(ctx->pk, secret_key, ctx->hash); + } else { + COPY(ctx->pk, public_key, 32); + } + + // Deterministic part of EdDSA: Construct a nonce by hashing the message + // instead of generating a random number. + // An actual random number would work just fine, and would save us + // the trouble of hashing the message twice. If we did that + // however, the user could fuck it up and reuse the nonce. + ctx->hash->init (ctx); + ctx->hash->update(ctx, prefix , 32); +} + +void crypto_sign_init_first_pass(crypto_sign_ctx_abstract *ctx, + const u8 secret_key[32], + const u8 public_key[32]) +{ + crypto_sign_init_first_pass_custom_hash(ctx, secret_key, public_key, + &crypto_blake2b_vtable); +} + +void crypto_sign_update(crypto_sign_ctx_abstract *ctx, + const u8 *msg, size_t msg_size) +{ + ctx->hash->update(ctx, msg, msg_size); +} + +void crypto_sign_init_second_pass(crypto_sign_ctx_abstract *ctx) +{ + u8 *r = ctx->buf + 32; + u8 *half_sig = ctx->buf + 64; + ctx->hash->final(ctx, r); + reduce(r); + + // first half of the signature = "random" nonce times the base point + ge R; + ge_scalarmult_base(&R, r); + ge_tobytes(half_sig, &R); + WIPE_CTX(&R); + + // Hash R, the public key, and the message together. + // It cannot be done in parallel with the first hash. + ctx->hash->init (ctx); + ctx->hash->update(ctx, half_sig, 32); + ctx->hash->update(ctx, ctx->pk , 32); +} + +void crypto_sign_final(crypto_sign_ctx_abstract *ctx, u8 signature[64]) +{ + u8 *a = ctx->buf; + u8 *r = ctx->buf + 32; + u8 *half_sig = ctx->buf + 64; + u8 h_ram[64]; + ctx->hash->final(ctx, h_ram); + reduce(h_ram); + COPY(signature, half_sig, 32); + mul_add(signature + 32, h_ram, a, r); // s = h_ram * a + r + WIPE_BUFFER(h_ram); + crypto_wipe(ctx, ctx->hash->ctx_size); +} + +void crypto_sign(u8 signature[64], + const u8 secret_key[32], + const u8 public_key[32], + const u8 *message, size_t message_size) +{ + crypto_sign_ctx ctx; + crypto_sign_ctx_abstract *actx = (crypto_sign_ctx_abstract*)&ctx; + crypto_sign_init_first_pass (actx, secret_key, public_key); + crypto_sign_update (actx, message, message_size); + crypto_sign_init_second_pass(actx); + crypto_sign_update (actx, message, message_size); + crypto_sign_final (actx, signature); +} + +void crypto_check_init_custom_hash(crypto_check_ctx_abstract *ctx, + const u8 signature[64], + const u8 public_key[32], + const crypto_sign_vtable *hash) +{ + ctx->hash = hash; // set vtable + COPY(ctx->buf, signature , 64); + COPY(ctx->pk , public_key, 32); + ctx->hash->init (ctx); + ctx->hash->update(ctx, signature , 32); + ctx->hash->update(ctx, public_key, 32); +} + +void crypto_check_init(crypto_check_ctx_abstract *ctx, const u8 signature[64], + const u8 public_key[32]) +{ + crypto_check_init_custom_hash(ctx, signature, public_key, + &crypto_blake2b_vtable); +} + +void crypto_check_update(crypto_check_ctx_abstract *ctx, + const u8 *msg, size_t msg_size) +{ + ctx->hash->update(ctx, msg, msg_size); +} + +int crypto_check_final(crypto_check_ctx_abstract *ctx) +{ + u8 *s = ctx->buf + 32; // s + u8 h_ram[64]; + u32 s32[8]; // s (different encoding) + ge A; + + ctx->hash->final(ctx, h_ram); + reduce(h_ram); + load32_le_buf(s32, s, 8); + if (ge_frombytes_neg_vartime(&A, ctx->pk) || // A = -pk + is_above_l(s32)) { // prevent s malleability + return -1; + } + ge_double_scalarmult_vartime(&A, h_ram, s); // A = [s]B - [h_ram]pk + ge_tobytes(ctx->pk, &A); // R_check = A + return crypto_verify32(ctx->buf, ctx->pk); // R == R_check ? OK : fail +} + +int crypto_check(const u8 signature[64], const u8 public_key[32], + const u8 *message, size_t message_size) +{ + crypto_check_ctx ctx; + crypto_check_ctx_abstract *actx = (crypto_check_ctx_abstract*)&ctx; + crypto_check_init (actx, signature, public_key); + crypto_check_update(actx, message, message_size); + return crypto_check_final(actx); +} + +/////////////////////// +/// EdDSA to X25519 /// +/////////////////////// +void crypto_from_eddsa_private(u8 x25519[32], const u8 eddsa[32]) +{ + u8 a[64]; + crypto_blake2b(a, eddsa, 32); + COPY(x25519, a, 32); + WIPE_BUFFER(a); +} + +void crypto_from_eddsa_public(u8 x25519[32], const u8 eddsa[32]) +{ + fe t1, t2; + fe_frombytes(t2, eddsa); + fe_add(t1, fe_one, t2); + fe_sub(t2, fe_one, t2); + fe_invert(t2, t2); + fe_mul(t1, t1, t2); + fe_tobytes(x25519, t1); + WIPE_BUFFER(t1); + WIPE_BUFFER(t2); +} + +///////////////////////////////////////////// +/// Dirty ephemeral public key generation /// +///////////////////////////////////////////// + +// Those functions generates a public key, *without* clearing the +// cofactor. Sending that key over the network leaks 3 bits of the +// private key. Use only to generate ephemeral keys that will be hidden +// with crypto_curve_to_hidden(). +// +// The public key is otherwise compatible with crypto_x25519() and +// crypto_key_exchange() (those properly clear the cofactor). +// +// Note that the distribution of the resulting public keys is almost +// uniform. Flipping the sign of the v coordinate (not provided by this +// function), covers the entire key space almost perfectly, where +// "almost" means a 2^-128 bias (undetectable). This uniformity is +// needed to ensure the proper randomness of the resulting +// representatives (once we apply crypto_curve_to_hidden()). +// +// Recall that Curve25519 has order C = 2^255 + e, with e < 2^128 (not +// to be confused with the prime order of the main subgroup, L, which is +// 8 times less than that). +// +// Generating all points would require us to multiply a point of order C +// (the base point plus any point of order 8) by all scalars from 0 to +// C-1. Clamping limits us to scalars between 2^254 and 2^255 - 1. But +// by negating the resulting point at random, we also cover scalars from +// -2^255 + 1 to -2^254 (which modulo C is congruent to e+1 to 2^254 + e). +// +// In practice: +// - Scalars from 0 to e + 1 are never generated +// - Scalars from 2^255 to 2^255 + e are never generated +// - Scalars from 2^254 + 1 to 2^254 + e are generated twice +// +// Since e < 2^128, detecting this bias requires observing over 2^100 +// representatives from a given source (this will never happen), *and* +// recovering enough of the private key to determine that they do, or do +// not, belong to the biased set (this practically requires solving +// discrete logarithm, which is conjecturally intractable). +// +// In practice, this means the bias is impossible to detect. + +// s + (x*L) % 8*L +// Guaranteed to fit in 256 bits iff s fits in 255 bits. +// L < 2^253 +// x%8 < 2^3 +// L * (x%8) < 2^255 +// s < 2^255 +// s + L * (x%8) < 2^256 +static void add_xl(u8 s[32], u8 x) +{ + u64 mod8 = x & 7; + u64 carry = 0; + FOR (i , 0, 8) { + carry = carry + load32_le(s + 4*i) + L[i] * mod8; + store32_le(s + 4*i, (u32)carry); + carry >>= 32; + } +} + +// "Small" dirty ephemeral key. +// Use if you need to shrink the size of the binary, and can afford to +// slow down by a factor of two (compared to the fast version) +// +// This version works by decoupling the cofactor from the main factor. +// +// - The trimmed scalar determines the main factor +// - The clamped bits of the scalar determine the cofactor. +// +// Cofactor and main factor are combined into a single scalar, which is +// then multiplied by a point of order 8*L (unlike the base point, which +// has prime order). That "dirty" base point is the addition of the +// regular base point (9), and a point of order 8. +void crypto_x25519_dirty_small(u8 public_key[32], const u8 secret_key[32]) +{ + // Base point of order 8*L + // Raw scalar multiplication with it does not clear the cofactor, + // and the resulting public key will reveal 3 bits of the scalar. + // + // The low order component of this base point has been chosen + // to yield the same results as crypto_x25519_dirty_fast(). + static const u8 dirty_base_point[32] = { + 0xd8, 0x86, 0x1a, 0xa2, 0x78, 0x7a, 0xd9, 0x26, 0x8b, 0x74, 0x74, 0xb6, + 0x82, 0xe3, 0xbe, 0xc3, 0xce, 0x36, 0x9a, 0x1e, 0x5e, 0x31, 0x47, 0xa2, + 0x6d, 0x37, 0x7c, 0xfd, 0x20, 0xb5, 0xdf, 0x75, + }; + // separate the main factor & the cofactor of the scalar + u8 scalar[32]; + COPY(scalar, secret_key, 32); + trim_scalar(scalar); + + // Separate the main factor and the cofactor + // + // The scalar is trimmed, so its cofactor is cleared. The three + // least significant bits however still have a main factor. We must + // remove it for X25519 compatibility. + // + // cofactor = lsb * L (modulo 8*L) + // combined = scalar + cofactor (modulo 8*L) + add_xl(scalar, secret_key[0]); + scalarmult(public_key, scalar, dirty_base_point, 256); + WIPE_BUFFER(scalar); +} + +// Select low order point +// We're computing the [cofactor]lop scalar multiplication, where: +// +// cofactor = tweak & 7. +// lop = (lop_x, lop_y) +// lop_x = sqrt((sqrt(d + 1) + 1) / d) +// lop_y = -lop_x * sqrtm1 +// +// The low order point has order 8. There are 4 such points. We've +// chosen the one whose both coordinates are positive (below p/2). +// The 8 low order points are as follows: +// +// [0]lop = ( 0 , 1 ) +// [1]lop = ( lop_x , lop_y) +// [2]lop = ( sqrt(-1), -0 ) +// [3]lop = ( lop_x , -lop_y) +// [4]lop = (-0 , -1 ) +// [5]lop = (-lop_x , -lop_y) +// [6]lop = (-sqrt(-1), 0 ) +// [7]lop = (-lop_x , lop_y) +// +// The x coordinate is either 0, sqrt(-1), lop_x, or their opposite. +// The y coordinate is either 0, -1 , lop_y, or their opposite. +// The pattern for both is the same, except for a rotation of 2 (modulo 8) +// +// This helper function captures the pattern, and we can use it thus: +// +// select_lop(x, lop_x, sqrtm1, cofactor); +// select_lop(y, lop_y, fe_one, cofactor + 2); +// +// This is faster than an actual scalar multiplication, +// and requires less code than naive constant time look up. +static void select_lop(fe out, const fe x, const fe k, u8 cofactor) +{ + fe tmp; + fe_0(out); + fe_ccopy(out, k , (cofactor >> 1) & 1); // bit 1 + fe_ccopy(out, x , (cofactor >> 0) & 1); // bit 0 + fe_neg (tmp, out); + fe_ccopy(out, tmp, (cofactor >> 2) & 1); // bit 2 + WIPE_BUFFER(tmp); +} + +// "Fast" dirty ephemeral key +// We use this one by default. +// +// This version works by performing a regular scalar multiplication, +// then add a low order point. The scalar multiplication is done in +// Edwards space for more speed (*2 compared to the "small" version). +// The cost is a bigger binary for programs that don't also sign messages. +void crypto_x25519_dirty_fast(u8 public_key[32], const u8 secret_key[32]) +{ + // Compute clean scalar multiplication + u8 scalar[32]; + ge pk; + COPY(scalar, secret_key, 32); + trim_scalar(scalar); + ge_scalarmult_base(&pk, scalar); + + // Compute low order point + fe t1, t2; + select_lop(t1, lop_x, sqrtm1, secret_key[0]); + select_lop(t2, lop_y, fe_one, secret_key[0] + 2); + ge_precomp low_order_point; + fe_add(low_order_point.Yp, t2, t1); + fe_sub(low_order_point.Ym, t2, t1); + fe_mul(low_order_point.T2, t2, t1); + fe_mul(low_order_point.T2, low_order_point.T2, D2); + + // Add low order point to the public key + ge_madd(&pk, &pk, &low_order_point, t1, t2); + + // Convert to Montgomery u coordinate (we ignore the sign) + fe_add(t1, pk.Z, pk.Y); + fe_sub(t2, pk.Z, pk.Y); + fe_invert(t2, t2); + fe_mul(t1, t1, t2); + + fe_tobytes(public_key, t1); + + WIPE_BUFFER(t1); WIPE_CTX(&pk); + WIPE_BUFFER(t2); WIPE_CTX(&low_order_point); + WIPE_BUFFER(scalar); +} + +/////////////////// +/// Elligator 2 /// +/////////////////// +static const fe A = {486662}; + +// Elligator direct map +// +// Computes the point corresponding to a representative, encoded in 32 +// bytes (little Endian). Since positive representatives fits in 254 +// bits, The two most significant bits are ignored. +// +// From the paper: +// w = -A / (fe(1) + non_square * r^2) +// e = chi(w^3 + A*w^2 + w) +// u = e*w - (fe(1)-e)*(A//2) +// v = -e * sqrt(u^3 + A*u^2 + u) +// +// We ignore v because we don't need it for X25519 (the Montgomery +// ladder only uses u). +// +// Note that e is either 0, 1 or -1 +// if e = 0 u = 0 and v = 0 +// if e = 1 u = w +// if e = -1 u = -w - A = w * non_square * r^2 +// +// Let r1 = non_square * r^2 +// Let r2 = 1 + r1 +// Note that r2 cannot be zero, -1/non_square is not a square. +// We can (tediously) verify that: +// w^3 + A*w^2 + w = (A^2*r1 - r2^2) * A / r2^3 +// Therefore: +// chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) * (A / r2^3)) +// chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) * (A / r2^3)) * 1 +// chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) * (A / r2^3)) * chi(r2^6) +// chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) * (A / r2^3) * r2^6) +// chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) * A * r2^3) +// Corollary: +// e = 1 if (A^2*r1 - r2^2) * A * r2^3) is a non-zero square +// e = -1 if (A^2*r1 - r2^2) * A * r2^3) is not a square +// Note that w^3 + A*w^2 + w (and therefore e) can never be zero: +// w^3 + A*w^2 + w = w * (w^2 + A*w + 1) +// w^3 + A*w^2 + w = w * (w^2 + A*w + A^2/4 - A^2/4 + 1) +// w^3 + A*w^2 + w = w * (w + A/2)^2 - A^2/4 + 1) +// which is zero only if: +// w = 0 (impossible) +// (w + A/2)^2 = A^2/4 - 1 (impossible, because A^2/4-1 is not a square) +// +// Let isr = invsqrt((A^2*r1 - r2^2) * A * r2^3) +// isr = sqrt(1 / ((A^2*r1 - r2^2) * A * r2^3)) if e = 1 +// isr = sqrt(sqrt(-1) / ((A^2*r1 - r2^2) * A * r2^3)) if e = -1 +// +// if e = 1 +// let u1 = -A * (A^2*r1 - r2^2) * A * r2^2 * isr^2 +// u1 = w +// u1 = u +// +// if e = -1 +// let ufactor = -non_square * sqrt(-1) * r^2 +// let vfactor = sqrt(ufactor) +// let u2 = -A * (A^2*r1 - r2^2) * A * r2^2 * isr^2 * ufactor +// u2 = w * -1 * -non_square * r^2 +// u2 = w * non_square * r^2 +// u2 = u +void crypto_hidden_to_curve(uint8_t curve[32], const uint8_t hidden[32]) +{ + fe r, u, t1, t2, t3; + fe_frombytes_mask(r, hidden, 2); // r is encoded in 254 bits. + fe_sq(r, r); + fe_add(t1, r, r); + fe_add(u, t1, fe_one); + fe_sq (t2, u); + fe_mul(t3, A2, t1); + fe_sub(t3, t3, t2); + fe_mul(t3, t3, A); + fe_mul(t1, t2, u); + fe_mul(t1, t3, t1); + int is_square = invsqrt(t1, t1); + fe_mul(u, r, ufactor); + fe_ccopy(u, fe_one, is_square); + fe_sq (t1, t1); + fe_mul(u, u, A); + fe_mul(u, u, t3); + fe_mul(u, u, t2); + fe_mul(u, u, t1); + fe_neg(u, u); + fe_tobytes(curve, u); + + WIPE_BUFFER(t1); WIPE_BUFFER(r); + WIPE_BUFFER(t2); WIPE_BUFFER(u); + WIPE_BUFFER(t3); +} + +// Elligator inverse map +// +// Computes the representative of a point, if possible. If not, it does +// nothing and returns -1. Note that the success of the operation +// depends only on the point (more precisely its u coordinate). The +// tweak parameter is used only upon success +// +// The tweak should be a random byte. Beyond that, its contents are an +// implementation detail. Currently, the tweak comprises: +// - Bit 1 : sign of the v coordinate (0 if positive, 1 if negative) +// - Bit 2-5: not used +// - Bits 6-7: random padding +// +// From the paper: +// Let sq = -non_square * u * (u+A) +// if sq is not a square, or u = -A, there is no mapping +// Assuming there is a mapping: +// if v is positive: r = sqrt(-u / (non_square * (u+A))) +// if v is negative: r = sqrt(-(u+A) / (non_square * u )) +// +// We compute isr = invsqrt(-non_square * u * (u+A)) +// if it wasn't a square, abort. +// else, isr = sqrt(-1 / (non_square * u * (u+A)) +// +// If v is positive, we return isr * u: +// isr * u = sqrt(-1 / (non_square * u * (u+A)) * u +// isr * u = sqrt(-u / (non_square * (u+A)) +// +// If v is negative, we return isr * (u+A): +// isr * (u+A) = sqrt(-1 / (non_square * u * (u+A)) * (u+A) +// isr * (u+A) = sqrt(-(u+A) / (non_square * u) +int crypto_curve_to_hidden(u8 hidden[32], const u8 public_key[32], u8 tweak) +{ + fe t1, t2, t3; + fe_frombytes(t1, public_key); // t1 = u + + fe_add(t2, t1, A); // t2 = u + A + fe_mul(t3, t1, t2); + fe_mul_small(t3, t3, -2); + int is_square = invsqrt(t3, t3); // t3 = sqrt(-1 / non_square * u * (u+A)) + if (is_square) { + // The only variable time bit. This ultimately reveals how many + // tries it took us to find a representable key. + // This does not affect security as long as we try keys at random. + + fe_ccopy (t1, t2, tweak & 1); // multiply by u if v is positive, + fe_mul (t3, t1, t3); // multiply by u+A otherwise + fe_mul_small(t1, t3, 2); + fe_neg (t2, t3); + fe_ccopy (t3, t2, fe_isodd(t1)); + fe_tobytes(hidden, t3); + + // Pad with two random bits + hidden[31] |= tweak & 0xc0; + } + + WIPE_BUFFER(t1); + WIPE_BUFFER(t2); + WIPE_BUFFER(t3); + return is_square - 1; +} + +void crypto_hidden_key_pair(u8 hidden[32], u8 secret_key[32], u8 seed[32]) +{ + u8 pk [32]; // public key + u8 buf[64]; // seed + representative + COPY(buf + 32, seed, 32); + do { + crypto_chacha20(buf, 0, 64, buf+32, zero); + crypto_x25519_dirty_fast(pk, buf); // or the "small" version + } while(crypto_curve_to_hidden(buf+32, pk, buf[32])); + // Note that the return value of crypto_curve_to_hidden() is + // independent from its tweak parameter. + // Therefore, buf[32] is not actually reused. Either we loop one + // more time and buf[32] is used for the new seed, or we succeeded, + // and buf[32] becomes the tweak parameter. + + crypto_wipe(seed, 32); + COPY(hidden , buf + 32, 32); + COPY(secret_key, buf , 32); + WIPE_BUFFER(buf); + WIPE_BUFFER(pk); +} + +//////////////////// +/// Key exchange /// +//////////////////// +void crypto_key_exchange(u8 shared_key[32], + const u8 your_secret_key [32], + const u8 their_public_key[32]) +{ + crypto_x25519(shared_key, your_secret_key, their_public_key); + crypto_hchacha20(shared_key, shared_key, zero); +} + +/////////////////////// +/// Scalar division /// +/////////////////////// + +// Montgomery reduction. +// Divides x by (2^256), and reduces the result modulo L +// +// Precondition: +// x < L * 2^256 +// Constants: +// r = 2^256 (makes division by r trivial) +// k = (r * (1/r) - 1) // L (1/r is computed modulo L ) +// Algorithm: +// s = (x * k) % r +// t = x + s*L (t is always a multiple of r) +// u = (t/r) % L (u is always below 2*L, conditional subtraction is enough) +static void redc(u32 u[8], u32 x[16]) +{ + static const u32 k[8] = { 0x12547e1b, 0xd2b51da3, 0xfdba84ff, 0xb1a206f2, + 0xffa36bea, 0x14e75438, 0x6fe91836, 0x9db6c6f2, }; + + // s = x * k (modulo 2^256) + // This is cheaper than the full multiplication. + u32 s[8] = {0}; + FOR (i, 0, 8) { + u64 carry = 0; + FOR (j, 0, 8-i) { + carry += s[i+j] + (u64)x[i] * k[j]; + s[i+j] = (u32)carry; + carry >>= 32; + } + } + u32 t[16] = {0}; + multiply(t, s, L); + + // t = t + x + u64 carry = 0; + FOR (i, 0, 16) { + carry += (u64)t[i] + x[i]; + t[i] = (u32)carry; + carry >>= 32; + } + + // u = (t / 2^256) % L + // Note that t / 2^256 is always below 2*L, + // So a constant time conditional subtraction is enough + remove_l(u, t+8); + + WIPE_BUFFER(s); + WIPE_BUFFER(t); +} + +void crypto_x25519_inverse(u8 blind_salt [32], const u8 private_key[32], + const u8 curve_point[32]) +{ + static const u8 Lm2[32] = { // L - 2 + 0xeb, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58, 0xd6, 0x9c, 0xf7, 0xa2, + 0xde, 0xf9, 0xde, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, }; + // 1 in Montgomery form + u32 m_inv [8] = {0x8d98951d, 0xd6ec3174, 0x737dcf70, 0xc6ef5bf4, + 0xfffffffe, 0xffffffff, 0xffffffff, 0x0fffffff,}; + + u8 scalar[32]; + COPY(scalar, private_key, 32); + trim_scalar(scalar); + + // Convert the scalar in Montgomery form + // m_scl = scalar * 2^256 (modulo L) + u32 m_scl[8]; + { + u32 tmp[16]; + ZERO(tmp, 8); + load32_le_buf(tmp+8, scalar, 8); + mod_l(scalar, tmp); + load32_le_buf(m_scl, scalar, 8); + WIPE_BUFFER(tmp); // Wipe ASAP to save stack space + } + + // Compute the inverse + u32 product[16]; + for (int i = 252; i >= 0; i--) { + ZERO(product, 16); + multiply(product, m_inv, m_inv); + redc(m_inv, product); + if (scalar_bit(Lm2, i)) { + ZERO(product, 16); + multiply(product, m_inv, m_scl); + redc(m_inv, product); + } + } + // Convert the inverse *out* of Montgomery form + // scalar = m_inv / 2^256 (modulo L) + COPY(product, m_inv, 8); + ZERO(product + 8, 8); + redc(m_inv, product); + store32_le_buf(scalar, m_inv, 8); // the *inverse* of the scalar + + // Clear the cofactor of scalar: + // cleared = scalar * (3*L + 1) (modulo 8*L) + // cleared = scalar + scalar * 3 * L (modulo 8*L) + // Note that (scalar * 3) is reduced modulo 8, so we only need the + // first byte. + add_xl(scalar, scalar[0] * 3); + + // Recall that 8*L < 2^256. However it is also very close to + // 2^255. If we spanned the ladder over 255 bits, random tests + // wouldn't catch the off-by-one error. + scalarmult(blind_salt, scalar, curve_point, 256); + + WIPE_BUFFER(scalar); WIPE_BUFFER(m_scl); + WIPE_BUFFER(product); WIPE_BUFFER(m_inv); +} + +//////////////////////////////// +/// Authenticated encryption /// +//////////////////////////////// +static void lock_auth(u8 mac[16], const u8 auth_key[32], + const u8 *ad , size_t ad_size, + const u8 *cipher_text, size_t text_size) +{ + u8 sizes[16]; // Not secret, not wiped + store64_le(sizes + 0, ad_size); + store64_le(sizes + 8, text_size); + crypto_poly1305_ctx poly_ctx; // auto wiped... + crypto_poly1305_init (&poly_ctx, auth_key); + crypto_poly1305_update(&poly_ctx, ad , ad_size); + crypto_poly1305_update(&poly_ctx, zero , align(ad_size, 16)); + crypto_poly1305_update(&poly_ctx, cipher_text, text_size); + crypto_poly1305_update(&poly_ctx, zero , align(text_size, 16)); + crypto_poly1305_update(&poly_ctx, sizes , 16); + crypto_poly1305_final (&poly_ctx, mac); // ...here +} + +void crypto_lock_aead(u8 mac[16], u8 *cipher_text, + const u8 key[32], const u8 nonce[24], + const u8 *ad , size_t ad_size, + const u8 *plain_text, size_t text_size) +{ + u8 sub_key[32]; + u8 auth_key[64]; // "Wasting" the whole Chacha block is faster + crypto_hchacha20(sub_key, key, nonce); + crypto_chacha20(auth_key, 0, 64, sub_key, nonce + 16); + crypto_chacha20_ctr(cipher_text, plain_text, text_size, + sub_key, nonce + 16, 1); + lock_auth(mac, auth_key, ad, ad_size, cipher_text, text_size); + WIPE_BUFFER(sub_key); + WIPE_BUFFER(auth_key); +} + +int crypto_unlock_aead(u8 *plain_text, const u8 key[32], const u8 nonce[24], + const u8 mac[16], + const u8 *ad , size_t ad_size, + const u8 *cipher_text, size_t text_size) +{ + u8 sub_key[32]; + u8 auth_key[64]; // "Wasting" the whole Chacha block is faster + crypto_hchacha20(sub_key, key, nonce); + crypto_chacha20(auth_key, 0, 64, sub_key, nonce + 16); + u8 real_mac[16]; + lock_auth(real_mac, auth_key, ad, ad_size, cipher_text, text_size); + WIPE_BUFFER(auth_key); + int mismatch = crypto_verify16(mac, real_mac); + if (!mismatch) { + crypto_chacha20_ctr(plain_text, cipher_text, text_size, + sub_key, nonce + 16, 1); + } + WIPE_BUFFER(sub_key); + WIPE_BUFFER(real_mac); + return mismatch; +} + +void crypto_lock(u8 mac[16], u8 *cipher_text, + const u8 key[32], const u8 nonce[24], + const u8 *plain_text, size_t text_size) +{ + crypto_lock_aead(mac, cipher_text, key, nonce, 0, 0, plain_text, text_size); +} + +int crypto_unlock(u8 *plain_text, + const u8 key[32], const u8 nonce[24], const u8 mac[16], + const u8 *cipher_text, size_t text_size) +{ + return crypto_unlock_aead(plain_text, key, nonce, mac, 0, 0, + cipher_text, text_size); +} + +#ifdef MONOCYPHER_CPP_NAMESPACE +} +#endif diff --git a/src/3p/monocypher/monocypher.h b/src/3p/monocypher/monocypher.h new file mode 100644 index 0000000..c7b8396 --- /dev/null +++ b/src/3p/monocypher/monocypher.h @@ -0,0 +1,384 @@ +// Monocypher version 3.1.3 +// +// This file is dual-licensed. Choose whichever licence you want from +// the two licences listed below. +// +// The first licence is a regular 2-clause BSD licence. The second licence +// is the CC-0 from Creative Commons. It is intended to release Monocypher +// to the public domain. The BSD licence serves as a fallback option. +// +// SPDX-License-Identifier: BSD-2-Clause OR CC0-1.0 +// +// ------------------------------------------------------------------------ +// +// Copyright (c) 2017-2019, Loup Vaillant +// All rights reserved. +// +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// 1. Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// +// 2. Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the +// distribution. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// ------------------------------------------------------------------------ +// +// Written in 2017-2019 by Loup Vaillant +// +// To the extent possible under law, the author(s) have dedicated all copyright +// and related neighboring rights to this software to the public domain +// worldwide. This software is distributed without any warranty. +// +// You should have received a copy of the CC0 Public Domain Dedication along +// with this software. If not, see +// <https://creativecommons.org/publicdomain/zero/1.0/> + +#ifndef MONOCYPHER_H +#define MONOCYPHER_H + +#include <stddef.h> +#include <stdint.h> + +#ifdef MONOCYPHER_CPP_NAMESPACE +namespace MONOCYPHER_CPP_NAMESPACE { +#elif defined(__cplusplus) +extern "C" { +#endif + +//////////////////////// +/// Type definitions /// +//////////////////////// + +// Vtable for EdDSA with a custom hash. +// Instantiate it to define a custom hash. +// Its size, contents, and layout, are part of the public API. +typedef struct { + void (*hash)(uint8_t hash[64], const uint8_t *message, size_t message_size); + void (*init )(void *ctx); + void (*update)(void *ctx, const uint8_t *message, size_t message_size); + void (*final )(void *ctx, uint8_t hash[64]); + size_t ctx_size; +} crypto_sign_vtable; + +// Do not rely on the size or contents of any of the types below, +// they may change without notice. + +// Poly1305 +typedef struct { + uint32_t r[4]; // constant multiplier (from the secret key) + uint32_t h[5]; // accumulated hash + uint8_t c[16]; // chunk of the message + uint32_t pad[4]; // random number added at the end (from the secret key) + size_t c_idx; // How many bytes are there in the chunk. +} crypto_poly1305_ctx; + +// Hash (BLAKE2b) +typedef struct { + uint64_t hash[8]; + uint64_t input_offset[2]; + uint64_t input[16]; + size_t input_idx; + size_t hash_size; +} crypto_blake2b_ctx; + +// Signatures (EdDSA) +typedef struct { + const crypto_sign_vtable *hash; + uint8_t buf[96]; + uint8_t pk [32]; +} crypto_sign_ctx_abstract; +typedef crypto_sign_ctx_abstract crypto_check_ctx_abstract; + +typedef struct { + crypto_sign_ctx_abstract ctx; + crypto_blake2b_ctx hash; +} crypto_sign_ctx; +typedef crypto_sign_ctx crypto_check_ctx; + +//////////////////////////// +/// High level interface /// +//////////////////////////// + +// Constant time comparisons +// ------------------------- + +// Return 0 if a and b are equal, -1 otherwise +int crypto_verify16(const uint8_t a[16], const uint8_t b[16]); +int crypto_verify32(const uint8_t a[32], const uint8_t b[32]); +int crypto_verify64(const uint8_t a[64], const uint8_t b[64]); + +// Erase sensitive data +// -------------------- + +// Please erase all copies +void crypto_wipe(void *secret, size_t size); + + +// Authenticated encryption +// ------------------------ +void crypto_lock(uint8_t mac[16], + uint8_t *cipher_text, + const uint8_t key[32], + const uint8_t nonce[24], + const uint8_t *plain_text, size_t text_size); +int crypto_unlock(uint8_t *plain_text, + const uint8_t key[32], + const uint8_t nonce[24], + const uint8_t mac[16], + const uint8_t *cipher_text, size_t text_size); + +// With additional data +void crypto_lock_aead(uint8_t mac[16], + uint8_t *cipher_text, + const uint8_t key[32], + const uint8_t nonce[24], + const uint8_t *ad , size_t ad_size, + const uint8_t *plain_text, size_t text_size); +int crypto_unlock_aead(uint8_t *plain_text, + const uint8_t key[32], + const uint8_t nonce[24], + const uint8_t mac[16], + const uint8_t *ad , size_t ad_size, + const uint8_t *cipher_text, size_t text_size); + + +// General purpose hash (BLAKE2b) +// ------------------------------ + +// Direct interface +void crypto_blake2b(uint8_t hash[64], + const uint8_t *message, size_t message_size); + +void crypto_blake2b_general(uint8_t *hash , size_t hash_size, + const uint8_t *key , size_t key_size, // optional + const uint8_t *message, size_t message_size); + +// Incremental interface +void crypto_blake2b_init (crypto_blake2b_ctx *ctx); +void crypto_blake2b_update(crypto_blake2b_ctx *ctx, + const uint8_t *message, size_t message_size); +void crypto_blake2b_final (crypto_blake2b_ctx *ctx, uint8_t *hash); + +void crypto_blake2b_general_init(crypto_blake2b_ctx *ctx, size_t hash_size, + const uint8_t *key, size_t key_size); + +// vtable for signatures +extern const crypto_sign_vtable crypto_blake2b_vtable; + + +// Password key derivation (Argon2 i) +// ---------------------------------- +void crypto_argon2i(uint8_t *hash, uint32_t hash_size, // >= 4 + void *work_area, uint32_t nb_blocks, // >= 8 + uint32_t nb_iterations, // >= 3 + const uint8_t *password, uint32_t password_size, + const uint8_t *salt, uint32_t salt_size); // >= 8 + +void crypto_argon2i_general(uint8_t *hash, uint32_t hash_size,// >= 4 + void *work_area, uint32_t nb_blocks,// >= 8 + uint32_t nb_iterations, // >= 3 + const uint8_t *password, uint32_t password_size, + const uint8_t *salt, uint32_t salt_size,// >= 8 + const uint8_t *key, uint32_t key_size, + const uint8_t *ad, uint32_t ad_size); + + +// Key exchange (x25519 + HChacha20) +// --------------------------------- +#define crypto_key_exchange_public_key crypto_x25519_public_key +void crypto_key_exchange(uint8_t shared_key [32], + const uint8_t your_secret_key [32], + const uint8_t their_public_key[32]); + + +// Signatures (EdDSA with curve25519 + BLAKE2b) +// -------------------------------------------- + +// Generate public key +void crypto_sign_public_key(uint8_t public_key[32], + const uint8_t secret_key[32]); + +// Direct interface +void crypto_sign(uint8_t signature [64], + const uint8_t secret_key[32], + const uint8_t public_key[32], // optional, may be 0 + const uint8_t *message, size_t message_size); +int crypto_check(const uint8_t signature [64], + const uint8_t public_key[32], + const uint8_t *message, size_t message_size); + +//////////////////////////// +/// Low level primitives /// +//////////////////////////// + +// For experts only. You have been warned. + +// Chacha20 +// -------- + +// Specialised hash. +// Used to hash X25519 shared secrets. +void crypto_hchacha20(uint8_t out[32], + const uint8_t key[32], + const uint8_t in [16]); + +// Unauthenticated stream cipher. +// Don't forget to add authentication. +void crypto_chacha20(uint8_t *cipher_text, + const uint8_t *plain_text, + size_t text_size, + const uint8_t key[32], + const uint8_t nonce[8]); +void crypto_xchacha20(uint8_t *cipher_text, + const uint8_t *plain_text, + size_t text_size, + const uint8_t key[32], + const uint8_t nonce[24]); +void crypto_ietf_chacha20(uint8_t *cipher_text, + const uint8_t *plain_text, + size_t text_size, + const uint8_t key[32], + const uint8_t nonce[12]); +uint64_t crypto_chacha20_ctr(uint8_t *cipher_text, + const uint8_t *plain_text, + size_t text_size, + const uint8_t key[32], + const uint8_t nonce[8], + uint64_t ctr); +uint64_t crypto_xchacha20_ctr(uint8_t *cipher_text, + const uint8_t *plain_text, + size_t text_size, + const uint8_t key[32], + const uint8_t nonce[24], + uint64_t ctr); +uint32_t crypto_ietf_chacha20_ctr(uint8_t *cipher_text, + const uint8_t *plain_text, + size_t text_size, + const uint8_t key[32], + const uint8_t nonce[12], + uint32_t ctr); + +// Poly 1305 +// --------- + +// This is a *one time* authenticator. +// Disclosing the mac reveals the key. +// See crypto_lock() on how to use it properly. + +// Direct interface +void crypto_poly1305(uint8_t mac[16], + const uint8_t *message, size_t message_size, + const uint8_t key[32]); + +// Incremental interface +void crypto_poly1305_init (crypto_poly1305_ctx *ctx, const uint8_t key[32]); +void crypto_poly1305_update(crypto_poly1305_ctx *ctx, + const uint8_t *message, size_t message_size); +void crypto_poly1305_final (crypto_poly1305_ctx *ctx, uint8_t mac[16]); + + +// X-25519 +// ------- + +// Shared secrets are not quite random. +// Hash them to derive an actual shared key. +void crypto_x25519_public_key(uint8_t public_key[32], + const uint8_t secret_key[32]); +void crypto_x25519(uint8_t raw_shared_secret[32], + const uint8_t your_secret_key [32], + const uint8_t their_public_key [32]); + +// "Dirty" versions of x25519_public_key() +// Only use to generate ephemeral keys you want to hide. +// Note that those functions leaks 3 bits of the private key. +void crypto_x25519_dirty_small(uint8_t pk[32], const uint8_t sk[32]); +void crypto_x25519_dirty_fast (uint8_t pk[32], const uint8_t sk[32]); + +// scalar "division" +// Used for OPRF. Be aware that exponential blinding is less secure +// than Diffie-Hellman key exchange. +void crypto_x25519_inverse(uint8_t blind_salt [32], + const uint8_t private_key[32], + const uint8_t curve_point[32]); + + +// EdDSA to X25519 +// --------------- +void crypto_from_eddsa_private(uint8_t x25519[32], const uint8_t eddsa[32]); +void crypto_from_eddsa_public (uint8_t x25519[32], const uint8_t eddsa[32]); + + +// EdDSA -- Incremental interface +// ------------------------------ + +// Signing (2 passes) +// Make sure the two passes hash the same message, +// else you might reveal the private key. +void crypto_sign_init_first_pass(crypto_sign_ctx_abstract *ctx, + const uint8_t secret_key[32], + const uint8_t public_key[32]); +void crypto_sign_update(crypto_sign_ctx_abstract *ctx, + const uint8_t *message, size_t message_size); +void crypto_sign_init_second_pass(crypto_sign_ctx_abstract *ctx); +// use crypto_sign_update() again. +void crypto_sign_final(crypto_sign_ctx_abstract *ctx, uint8_t signature[64]); + +// Verification (1 pass) +// Make sure you don't use (parts of) the message +// before you're done checking it. +void crypto_check_init (crypto_check_ctx_abstract *ctx, + const uint8_t signature[64], + const uint8_t public_key[32]); +void crypto_check_update(crypto_check_ctx_abstract *ctx, + const uint8_t *message, size_t message_size); +int crypto_check_final (crypto_check_ctx_abstract *ctx); + +// Custom hash interface +void crypto_sign_public_key_custom_hash(uint8_t public_key[32], + const uint8_t secret_key[32], + const crypto_sign_vtable *hash); +void crypto_sign_init_first_pass_custom_hash(crypto_sign_ctx_abstract *ctx, + const uint8_t secret_key[32], + const uint8_t public_key[32], + const crypto_sign_vtable *hash); +void crypto_check_init_custom_hash(crypto_check_ctx_abstract *ctx, + const uint8_t signature[64], + const uint8_t public_key[32], + const crypto_sign_vtable *hash); + +// Elligator 2 +// ----------- + +// Elligator mappings proper +void crypto_hidden_to_curve(uint8_t curve [32], const uint8_t hidden[32]); +int crypto_curve_to_hidden(uint8_t hidden[32], const uint8_t curve [32], + uint8_t tweak); + +// Easy to use key pair generation +void crypto_hidden_key_pair(uint8_t hidden[32], uint8_t secret_key[32], + uint8_t seed[32]); + + +#ifdef __cplusplus +} +#endif + +#endif // MONOCYPHER_H |